Metamath Proof Explorer


Theorem rmoimi2

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis rmoimi2.1 x x A φ x B ψ
Assertion rmoimi2 * x B ψ * x A φ

Proof

Step Hyp Ref Expression
1 rmoimi2.1 x x A φ x B ψ
2 moim x x A φ x B ψ * x x B ψ * x x A φ
3 1 2 ax-mp * x x B ψ * x x A φ
4 df-rmo * x B ψ * x x B ψ
5 df-rmo * x A φ * x x A φ
6 3 4 5 3imtr4i * x B ψ * x A φ