Metamath Proof Explorer


Theorem rmorabex

Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017)

Ref Expression
Assertion rmorabex * x A φ x A | φ V

Proof

Step Hyp Ref Expression
1 moabex * x x A φ x | x A φ V
2 df-rmo * x A φ * x x A φ
3 df-rab x A | φ = x | x A φ
4 3 eleq1i x A | φ V x | x A φ V
5 1 2 4 3imtr4i * x A φ x A | φ V