Metamath Proof Explorer


Theorem rmspecnonsq

Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion rmspecnonsq A 2 A 2 1

Proof

Step Hyp Ref Expression
1 eluzelz A 2 A
2 zsqcl A A 2
3 1 2 syl A 2 A 2
4 1zzd A 2 1
5 3 4 zsubcld A 2 A 2 1
6 sq1 1 2 = 1
7 eluz2b2 A 2 A 1 < A
8 7 simprbi A 2 1 < A
9 1red A 2 1
10 eluzelre A 2 A
11 0le1 0 1
12 11 a1i A 2 0 1
13 eluzge2nn0 A 2 A 0
14 13 nn0ge0d A 2 0 A
15 9 10 12 14 lt2sqd A 2 1 < A 1 2 < A 2
16 8 15 mpbid A 2 1 2 < A 2
17 6 16 eqbrtrrid A 2 1 < A 2
18 10 resqcld A 2 A 2
19 9 18 posdifd A 2 1 < A 2 0 < A 2 1
20 17 19 mpbid A 2 0 < A 2 1
21 elnnz A 2 1 A 2 1 0 < A 2 1
22 5 20 21 sylanbrc A 2 A 2 1
23 rmspecsqrtnq A 2 A 2 1
24 23 eldifbd A 2 ¬ A 2 1
25 24 intnand A 2 ¬ A 2 1 A 2 1
26 df-squarenn = a | a
27 26 eleq2i A 2 1 A 2 1 a | a
28 fveq2 a = A 2 1 a = A 2 1
29 28 eleq1d a = A 2 1 a A 2 1
30 29 elrab A 2 1 a | a A 2 1 A 2 1
31 27 30 bitr2i A 2 1 A 2 1 A 2 1
32 25 31 sylnib A 2 ¬ A 2 1
33 22 32 eldifd A 2 A 2 1