Metamath Proof Explorer


Theorem rmspecpos

Description: The discriminant used to define the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmspecpos A 2 A 2 1 +

Proof

Step Hyp Ref Expression
1 eluzelre A 2 A
2 1 resqcld A 2 A 2
3 1red A 2 1
4 2 3 resubcld A 2 A 2 1
5 sq1 1 2 = 1
6 eluz2b1 A 2 A 1 < A
7 6 simprbi A 2 1 < A
8 0le1 0 1
9 8 a1i A 2 0 1
10 eluzge2nn0 A 2 A 0
11 10 nn0ge0d A 2 0 A
12 3 1 9 11 lt2sqd A 2 1 < A 1 2 < A 2
13 7 12 mpbid A 2 1 2 < A 2
14 5 13 eqbrtrrid A 2 1 < A 2
15 3 2 posdifd A 2 1 < A 2 0 < A 2 1
16 14 15 mpbid A 2 0 < A 2 1
17 4 16 elrpd A 2 A 2 1 +