Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelcn |
|
2 |
1
|
sqcld |
|
3 |
|
ax-1cn |
|
4 |
|
subcl |
|
5 |
2 3 4
|
sylancl |
|
6 |
5
|
sqrtcld |
|
7 |
|
eluz2nn |
|
8 |
7
|
nnsqcld |
|
9 |
|
nnm1nn0 |
|
10 |
8 9
|
syl |
|
11 |
|
nnm1nn0 |
|
12 |
7 11
|
syl |
|
13 |
|
binom2sub1 |
|
14 |
1 13
|
syl |
|
15 |
|
2cnd |
|
16 |
15 1
|
mulcld |
|
17 |
3
|
a1i |
|
18 |
2 16 17
|
subsubd |
|
19 |
14 18
|
eqtr4d |
|
20 |
|
1red |
|
21 |
|
2re |
|
22 |
21
|
a1i |
|
23 |
|
eluzelre |
|
24 |
22 23
|
remulcld |
|
25 |
24 20
|
resubcld |
|
26 |
8
|
nnred |
|
27 |
|
eluz2gt1 |
|
28 |
20 20 23 27 27
|
lt2addmuld |
|
29 |
|
remulcl |
|
30 |
21 23 29
|
sylancr |
|
31 |
20 20 30
|
ltaddsubd |
|
32 |
28 31
|
mpbid |
|
33 |
20 25 26 32
|
ltsub2dd |
|
34 |
19 33
|
eqbrtrd |
|
35 |
26
|
ltm1d |
|
36 |
|
npcan |
|
37 |
1 3 36
|
sylancl |
|
38 |
37
|
oveq1d |
|
39 |
35 38
|
breqtrrd |
|
40 |
|
nonsq |
|
41 |
10 12 34 39 40
|
syl22anc |
|
42 |
6 41
|
eldifd |
|