Metamath Proof Explorer


Theorem rmspecsqrtnq

Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014) (Proof shortened by AV, 2-Aug-2021)

Ref Expression
Assertion rmspecsqrtnq A 2 A 2 1

Proof

Step Hyp Ref Expression
1 eluzelcn A 2 A
2 1 sqcld A 2 A 2
3 ax-1cn 1
4 subcl A 2 1 A 2 1
5 2 3 4 sylancl A 2 A 2 1
6 5 sqrtcld A 2 A 2 1
7 eluz2nn A 2 A
8 7 nnsqcld A 2 A 2
9 nnm1nn0 A 2 A 2 1 0
10 8 9 syl A 2 A 2 1 0
11 nnm1nn0 A A 1 0
12 7 11 syl A 2 A 1 0
13 binom2sub1 A A 1 2 = A 2 - 2 A + 1
14 1 13 syl A 2 A 1 2 = A 2 - 2 A + 1
15 2cnd A 2 2
16 15 1 mulcld A 2 2 A
17 3 a1i A 2 1
18 2 16 17 subsubd A 2 A 2 2 A 1 = A 2 - 2 A + 1
19 14 18 eqtr4d A 2 A 1 2 = A 2 2 A 1
20 1red A 2 1
21 2re 2
22 21 a1i A 2 2
23 eluzelre A 2 A
24 22 23 remulcld A 2 2 A
25 24 20 resubcld A 2 2 A 1
26 8 nnred A 2 A 2
27 eluz2gt1 A 2 1 < A
28 20 20 23 27 27 lt2addmuld A 2 1 + 1 < 2 A
29 remulcl 2 A 2 A
30 21 23 29 sylancr A 2 2 A
31 20 20 30 ltaddsubd A 2 1 + 1 < 2 A 1 < 2 A 1
32 28 31 mpbid A 2 1 < 2 A 1
33 20 25 26 32 ltsub2dd A 2 A 2 2 A 1 < A 2 1
34 19 33 eqbrtrd A 2 A 1 2 < A 2 1
35 26 ltm1d A 2 A 2 1 < A 2
36 npcan A 1 A - 1 + 1 = A
37 1 3 36 sylancl A 2 A - 1 + 1 = A
38 37 oveq1d A 2 A - 1 + 1 2 = A 2
39 35 38 breqtrrd A 2 A 2 1 < A - 1 + 1 2
40 nonsq A 2 1 0 A 1 0 A 1 2 < A 2 1 A 2 1 < A - 1 + 1 2 ¬ A 2 1
41 10 12 34 39 40 syl22anc A 2 ¬ A 2 1
42 6 41 eldifd A 2 A 2 1