Metamath Proof Explorer


Theorem rmulccn

Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017)

Ref Expression
Hypotheses rmulccn.1 J = topGen ran .
rmulccn.2 φ C
Assertion rmulccn φ x x C J Cn J

Proof

Step Hyp Ref Expression
1 rmulccn.1 J = topGen ran .
2 rmulccn.2 φ C
3 eqid TopOpen fld = TopOpen fld
4 3 cnfldtopon TopOpen fld TopOn
5 4 a1i φ TopOpen fld TopOn
6 5 cnmptid φ x x TopOpen fld Cn TopOpen fld
7 2 recnd φ C
8 5 5 7 cnmptc φ x C TopOpen fld Cn TopOpen fld
9 ax-mulf × : ×
10 ffn × : × × Fn ×
11 9 10 ax-mp × Fn ×
12 fnov × Fn × × = y , z y z
13 11 12 mpbi × = y , z y z
14 3 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
15 13 14 eqeltrri y , z y z TopOpen fld × t TopOpen fld Cn TopOpen fld
16 15 a1i φ y , z y z TopOpen fld × t TopOpen fld Cn TopOpen fld
17 oveq12 y = x z = C y z = x C
18 5 6 8 5 5 16 17 cnmpt12 φ x x C TopOpen fld Cn TopOpen fld
19 ax-resscn
20 4 toponunii = TopOpen fld
21 20 cnrest x x C TopOpen fld Cn TopOpen fld x x C TopOpen fld 𝑡 Cn TopOpen fld
22 18 19 21 sylancl φ x x C TopOpen fld 𝑡 Cn TopOpen fld
23 simpr φ x x
24 7 adantr φ x C
25 23 24 mulcld φ x x C
26 25 ralrimiva φ x x C
27 eqid x x C = x x C
28 27 fnmpt x x C x x C Fn
29 26 28 syl φ x x C Fn
30 fnssres x x C Fn x x C Fn
31 29 19 30 sylancl φ x x C Fn
32 simpr φ w w
33 fvres w x x C w = x x C w
34 recn w w
35 oveq1 x = w x C = w C
36 ovex w C V
37 35 27 36 fvmpt w x x C w = w C
38 34 37 syl w x x C w = w C
39 33 38 eqtrd w x x C w = w C
40 32 39 syl φ w x x C w = w C
41 2 adantr φ w C
42 32 41 remulcld φ w w C
43 40 42 eqeltrd φ w x x C w
44 43 ralrimiva φ w x x C w
45 fnfvrnss x x C Fn w x x C w ran x x C
46 31 44 45 syl2anc φ ran x x C
47 19 a1i φ
48 cnrest2 TopOpen fld TopOn ran x x C x x C TopOpen fld 𝑡 Cn TopOpen fld x x C TopOpen fld 𝑡 Cn TopOpen fld 𝑡
49 5 46 47 48 syl3anc φ x x C TopOpen fld 𝑡 Cn TopOpen fld x x C TopOpen fld 𝑡 Cn TopOpen fld 𝑡
50 22 49 mpbid φ x x C TopOpen fld 𝑡 Cn TopOpen fld 𝑡
51 resmpt x x C = x x C
52 19 51 ax-mp x x C = x x C
53 3 tgioo2 topGen ran . = TopOpen fld 𝑡
54 1 53 eqtri J = TopOpen fld 𝑡
55 54 54 oveq12i J Cn J = TopOpen fld 𝑡 Cn TopOpen fld 𝑡
56 55 eqcomi TopOpen fld 𝑡 Cn TopOpen fld 𝑡 = J Cn J
57 50 52 56 3eltr3g φ x x C J Cn J