Step |
Hyp |
Ref |
Expression |
1 |
|
rmulccn.1 |
|
2 |
|
rmulccn.2 |
|
3 |
|
eqid |
|
4 |
3
|
cnfldtopon |
|
5 |
4
|
a1i |
|
6 |
5
|
cnmptid |
|
7 |
2
|
recnd |
|
8 |
5 5 7
|
cnmptc |
|
9 |
|
ax-mulf |
|
10 |
|
ffn |
|
11 |
9 10
|
ax-mp |
|
12 |
|
fnov |
|
13 |
11 12
|
mpbi |
|
14 |
3
|
mulcn |
|
15 |
13 14
|
eqeltrri |
|
16 |
15
|
a1i |
|
17 |
|
oveq12 |
|
18 |
5 6 8 5 5 16 17
|
cnmpt12 |
|
19 |
|
ax-resscn |
|
20 |
4
|
toponunii |
|
21 |
20
|
cnrest |
|
22 |
18 19 21
|
sylancl |
|
23 |
|
simpr |
|
24 |
7
|
adantr |
|
25 |
23 24
|
mulcld |
|
26 |
25
|
ralrimiva |
|
27 |
|
eqid |
|
28 |
27
|
fnmpt |
|
29 |
26 28
|
syl |
|
30 |
|
fnssres |
|
31 |
29 19 30
|
sylancl |
|
32 |
|
simpr |
|
33 |
|
fvres |
|
34 |
|
recn |
|
35 |
|
oveq1 |
|
36 |
|
ovex |
|
37 |
35 27 36
|
fvmpt |
|
38 |
34 37
|
syl |
|
39 |
33 38
|
eqtrd |
|
40 |
32 39
|
syl |
|
41 |
2
|
adantr |
|
42 |
32 41
|
remulcld |
|
43 |
40 42
|
eqeltrd |
|
44 |
43
|
ralrimiva |
|
45 |
|
fnfvrnss |
|
46 |
31 44 45
|
syl2anc |
|
47 |
19
|
a1i |
|
48 |
|
cnrest2 |
|
49 |
5 46 47 48
|
syl3anc |
|
50 |
22 49
|
mpbid |
|
51 |
|
resmpt |
|
52 |
19 51
|
ax-mp |
|
53 |
3
|
tgioo2 |
|
54 |
1 53
|
eqtri |
|
55 |
54 54
|
oveq12i |
|
56 |
55
|
eqcomi |
|
57 |
50 52 56
|
3eltr3g |
|