Metamath Proof Explorer


Theorem rmxdbl

Description: "Double-angle formula" for X-values. Equation 2.13 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion rmxdbl A 2 N A X rm 2 N = 2 A X rm N 2 1

Proof

Step Hyp Ref Expression
1 zcn N N
2 1 adantl A 2 N N
3 2 2timesd A 2 N 2 N = N + N
4 3 oveq2d A 2 N A X rm 2 N = A X rm N + N
5 rmxadd A 2 N N A X rm N + N = A X rm N A X rm N + A 2 1 A Y rm N A Y rm N
6 5 3anidm23 A 2 N A X rm N + N = A X rm N A X rm N + A 2 1 A Y rm N A Y rm N
7 frmx X rm : 2 × 0
8 7 fovcl A 2 N A X rm N 0
9 8 nn0cnd A 2 N A X rm N
10 9 sqcld A 2 N A X rm N 2
11 rmspecnonsq A 2 A 2 1
12 11 eldifad A 2 A 2 1
13 12 nncnd A 2 A 2 1
14 13 adantr A 2 N A 2 1
15 frmy Y rm : 2 ×
16 15 fovcl A 2 N A Y rm N
17 16 zcnd A 2 N A Y rm N
18 17 sqcld A 2 N A Y rm N 2
19 14 18 mulcld A 2 N A 2 1 A Y rm N 2
20 10 10 19 pnncand A 2 N A X rm N 2 + A X rm N 2 - A X rm N 2 A 2 1 A Y rm N 2 = A X rm N 2 + A 2 1 A Y rm N 2
21 10 2timesd A 2 N 2 A X rm N 2 = A X rm N 2 + A X rm N 2
22 21 eqcomd A 2 N A X rm N 2 + A X rm N 2 = 2 A X rm N 2
23 rmxynorm A 2 N A X rm N 2 A 2 1 A Y rm N 2 = 1
24 22 23 oveq12d A 2 N A X rm N 2 + A X rm N 2 - A X rm N 2 A 2 1 A Y rm N 2 = 2 A X rm N 2 1
25 9 sqvald A 2 N A X rm N 2 = A X rm N A X rm N
26 17 sqvald A 2 N A Y rm N 2 = A Y rm N A Y rm N
27 26 oveq2d A 2 N A 2 1 A Y rm N 2 = A 2 1 A Y rm N A Y rm N
28 25 27 oveq12d A 2 N A X rm N 2 + A 2 1 A Y rm N 2 = A X rm N A X rm N + A 2 1 A Y rm N A Y rm N
29 20 24 28 3eqtr3rd A 2 N A X rm N A X rm N + A 2 1 A Y rm N A Y rm N = 2 A X rm N 2 1
30 4 6 29 3eqtrd A 2 N A X rm 2 N = 2 A X rm N 2 1