Metamath Proof Explorer


Theorem rmxluc

Description: The X sequence is a Lucas (second-order integer recurrence) sequence. Part 3 of equation 2.11 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014)

Ref Expression
Assertion rmxluc A 2 N A X rm N + 1 = 2 A A X rm N A X rm N 1

Proof

Step Hyp Ref Expression
1 peano2zm N N 1
2 frmx X rm : 2 × 0
3 2 fovcl A 2 N 1 A X rm N 1 0
4 3 nn0cnd A 2 N 1 A X rm N 1
5 1 4 sylan2 A 2 N A X rm N 1
6 peano2z N N + 1
7 2 fovcl A 2 N + 1 A X rm N + 1 0
8 7 nn0cnd A 2 N + 1 A X rm N + 1
9 6 8 sylan2 A 2 N A X rm N + 1
10 5 9 addcomd A 2 N A X rm N 1 + A X rm N + 1 = A X rm N + 1 + A X rm N 1
11 rmxp1 A 2 N A X rm N + 1 = A X rm N A + A 2 1 A Y rm N
12 rmxm1 A 2 N A X rm N 1 = A A X rm N A 2 1 A Y rm N
13 11 12 oveq12d A 2 N A X rm N + 1 + A X rm N 1 = A X rm N A + A 2 1 A Y rm N + A A X rm N A 2 1 A Y rm N
14 2 fovcl A 2 N A X rm N 0
15 14 nn0cnd A 2 N A X rm N
16 eluzelcn A 2 A
17 16 adantr A 2 N A
18 15 17 mulcld A 2 N A X rm N A
19 rmspecnonsq A 2 A 2 1
20 19 eldifad A 2 A 2 1
21 20 nncnd A 2 A 2 1
22 21 adantr A 2 N A 2 1
23 frmy Y rm : 2 ×
24 23 fovcl A 2 N A Y rm N
25 24 zcnd A 2 N A Y rm N
26 22 25 mulcld A 2 N A 2 1 A Y rm N
27 17 15 mulcld A 2 N A A X rm N
28 18 26 27 ppncand A 2 N A X rm N A + A 2 1 A Y rm N + A A X rm N A 2 1 A Y rm N = A X rm N A + A A X rm N
29 15 17 mulcomd A 2 N A X rm N A = A A X rm N
30 29 oveq1d A 2 N A X rm N A + A A X rm N = A A X rm N + A A X rm N
31 2cnd A 2 N 2
32 31 17 15 mulassd A 2 N 2 A A X rm N = 2 A A X rm N
33 27 2timesd A 2 N 2 A A X rm N = A A X rm N + A A X rm N
34 32 33 eqtr2d A 2 N A A X rm N + A A X rm N = 2 A A X rm N
35 28 30 34 3eqtrd A 2 N A X rm N A + A 2 1 A Y rm N + A A X rm N A 2 1 A Y rm N = 2 A A X rm N
36 10 13 35 3eqtrd A 2 N A X rm N 1 + A X rm N + 1 = 2 A A X rm N
37 2cn 2
38 mulcl 2 A 2 A
39 37 17 38 sylancr A 2 N 2 A
40 39 15 mulcld A 2 N 2 A A X rm N
41 40 5 9 subaddd A 2 N 2 A A X rm N A X rm N 1 = A X rm N + 1 A X rm N 1 + A X rm N + 1 = 2 A A X rm N
42 36 41 mpbird A 2 N 2 A A X rm N A X rm N 1 = A X rm N + 1
43 42 eqcomd A 2 N A X rm N + 1 = 2 A A X rm N A X rm N 1