Metamath Proof Explorer


Theorem rmxm1

Description: Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014)

Ref Expression
Assertion rmxm1 A 2 N A X rm N 1 = A A X rm N A 2 1 A Y rm N

Proof

Step Hyp Ref Expression
1 neg1z 1
2 rmxadd A 2 N 1 A X rm N + -1 = A X rm N A X rm -1 + A 2 1 A Y rm N A Y rm -1
3 1 2 mp3an3 A 2 N A X rm N + -1 = A X rm N A X rm -1 + A 2 1 A Y rm N A Y rm -1
4 1z 1
5 rmxneg A 2 1 A X rm -1 = A X rm 1
6 4 5 mpan2 A 2 A X rm -1 = A X rm 1
7 rmx1 A 2 A X rm 1 = A
8 6 7 eqtrd A 2 A X rm -1 = A
9 8 adantr A 2 N A X rm -1 = A
10 9 oveq2d A 2 N A X rm N A X rm -1 = A X rm N A
11 frmx X rm : 2 × 0
12 11 fovcl A 2 N A X rm N 0
13 12 nn0cnd A 2 N A X rm N
14 eluzelcn A 2 A
15 14 adantr A 2 N A
16 13 15 mulcomd A 2 N A X rm N A = A A X rm N
17 10 16 eqtrd A 2 N A X rm N A X rm -1 = A A X rm N
18 rmyneg A 2 1 A Y rm -1 = A Y rm 1
19 4 18 mpan2 A 2 A Y rm -1 = A Y rm 1
20 rmy1 A 2 A Y rm 1 = 1
21 20 negeqd A 2 A Y rm 1 = 1
22 19 21 eqtrd A 2 A Y rm -1 = 1
23 22 oveq2d A 2 A Y rm N A Y rm -1 = A Y rm N -1
24 23 adantr A 2 N A Y rm N A Y rm -1 = A Y rm N -1
25 frmy Y rm : 2 ×
26 25 fovcl A 2 N A Y rm N
27 26 zcnd A 2 N A Y rm N
28 ax-1cn 1
29 mulneg2 A Y rm N 1 A Y rm N -1 = A Y rm N 1
30 27 28 29 sylancl A 2 N A Y rm N -1 = A Y rm N 1
31 27 mulid1d A 2 N A Y rm N 1 = A Y rm N
32 31 negeqd A 2 N A Y rm N 1 = A Y rm N
33 30 32 eqtrd A 2 N A Y rm N -1 = A Y rm N
34 24 33 eqtrd A 2 N A Y rm N A Y rm -1 = A Y rm N
35 34 oveq2d A 2 N A 2 1 A Y rm N A Y rm -1 = A 2 1 A Y rm N
36 rmspecnonsq A 2 A 2 1
37 36 eldifad A 2 A 2 1
38 37 nncnd A 2 A 2 1
39 38 adantr A 2 N A 2 1
40 39 27 mulneg2d A 2 N A 2 1 A Y rm N = A 2 1 A Y rm N
41 35 40 eqtrd A 2 N A 2 1 A Y rm N A Y rm -1 = A 2 1 A Y rm N
42 17 41 oveq12d A 2 N A X rm N A X rm -1 + A 2 1 A Y rm N A Y rm -1 = A A X rm N + A 2 1 A Y rm N
43 3 42 eqtrd A 2 N A X rm N + -1 = A A X rm N + A 2 1 A Y rm N
44 zcn N N
45 44 adantl A 2 N N
46 negsub N 1 N + -1 = N 1
47 45 28 46 sylancl A 2 N N + -1 = N 1
48 47 oveq2d A 2 N A X rm N + -1 = A X rm N 1
49 15 13 mulcld A 2 N A A X rm N
50 39 27 mulcld A 2 N A 2 1 A Y rm N
51 49 50 negsubd A 2 N A A X rm N + A 2 1 A Y rm N = A A X rm N A 2 1 A Y rm N
52 43 48 51 3eqtr3d A 2 N A X rm N 1 = A A X rm N A 2 1 A Y rm N