Metamath Proof Explorer


Theorem rmxnn

Description: The X-sequence is defined to range over NN0 but never actually takes the value 0. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion rmxnn A 2 N A X rm N

Proof

Step Hyp Ref Expression
1 nn0z N 0 N
2 frmx X rm : 2 × 0
3 2 fovcl A 2 N A X rm N 0
4 1 3 sylan2 A 2 N 0 A X rm N 0
5 rmxypos A 2 N 0 0 < A X rm N 0 A Y rm N
6 5 simpld A 2 N 0 0 < A X rm N
7 elnnnn0b A X rm N A X rm N 0 0 < A X rm N
8 4 6 7 sylanbrc A 2 N 0 A X rm N
9 8 adantlr A 2 N N 0 A X rm N
10 rmxneg A 2 N A X rm -N = A X rm N
11 10 adantr A 2 N N 0 A X rm -N = A X rm N
12 nn0z N 0 N
13 2 fovcl A 2 N A X rm -N 0
14 12 13 sylan2 A 2 N 0 A X rm -N 0
15 rmxypos A 2 N 0 0 < A X rm -N 0 A Y rm -N
16 15 simpld A 2 N 0 0 < A X rm -N
17 elnnnn0b A X rm -N A X rm -N 0 0 < A X rm -N
18 14 16 17 sylanbrc A 2 N 0 A X rm -N
19 18 adantlr A 2 N N 0 A X rm -N
20 11 19 eqeltrrd A 2 N N 0 A X rm N
21 elznn0 N N N 0 N 0
22 21 simprbi N N 0 N 0
23 22 adantl A 2 N N 0 N 0
24 9 20 23 mpjaodan A 2 N A X rm N