Step |
Hyp |
Ref |
Expression |
1 |
|
rmspecnonsq |
|
2 |
1
|
3ad2ant1 |
|
3 |
|
pellfund14b |
|
4 |
2 3
|
syl |
|
5 |
|
nn0re |
|
6 |
5
|
3ad2ant2 |
|
7 |
|
rmspecpos |
|
8 |
7
|
rpsqrtcld |
|
9 |
8
|
rpred |
|
10 |
9
|
3ad2ant1 |
|
11 |
|
zre |
|
12 |
11
|
3ad2ant3 |
|
13 |
10 12
|
remulcld |
|
14 |
6 13
|
readdcld |
|
15 |
14
|
biantrurd |
|
16 |
|
simpl2 |
|
17 |
|
simpl3 |
|
18 |
|
eqidd |
|
19 |
|
simpr |
|
20 |
|
oveq1 |
|
21 |
20
|
eqeq2d |
|
22 |
|
oveq1 |
|
23 |
22
|
oveq1d |
|
24 |
23
|
eqeq1d |
|
25 |
21 24
|
anbi12d |
|
26 |
|
oveq2 |
|
27 |
26
|
oveq2d |
|
28 |
27
|
eqeq2d |
|
29 |
|
oveq1 |
|
30 |
29
|
oveq2d |
|
31 |
30
|
oveq2d |
|
32 |
31
|
eqeq1d |
|
33 |
28 32
|
anbi12d |
|
34 |
25 33
|
rspc2ev |
|
35 |
16 17 18 19 34
|
syl112anc |
|
36 |
35
|
ex |
|
37 |
|
rmspecsqrtnq |
|
38 |
37
|
3ad2ant1 |
|
39 |
38
|
adantr |
|
40 |
|
nn0ssq |
|
41 |
|
simp2 |
|
42 |
40 41
|
sselid |
|
43 |
42
|
adantr |
|
44 |
|
zq |
|
45 |
44
|
3ad2ant3 |
|
46 |
45
|
adantr |
|
47 |
40
|
sseli |
|
48 |
47
|
ad2antrl |
|
49 |
|
zq |
|
50 |
49
|
ad2antll |
|
51 |
|
qirropth |
|
52 |
39 43 46 48 50 51
|
syl122anc |
|
53 |
52
|
biimpd |
|
54 |
53
|
anim1d |
|
55 |
|
oveq1 |
|
56 |
|
oveq1 |
|
57 |
56
|
oveq2d |
|
58 |
55 57
|
oveqan12d |
|
59 |
58
|
eqcomd |
|
60 |
59
|
eqeq1d |
|
61 |
60
|
biimpa |
|
62 |
54 61
|
syl6 |
|
63 |
62
|
rexlimdvva |
|
64 |
36 63
|
impbid |
|
65 |
|
elpell14qr |
|
66 |
2 65
|
syl |
|
67 |
15 64 66
|
3bitr4d |
|
68 |
38
|
adantr |
|
69 |
42
|
adantr |
|
70 |
45
|
adantr |
|
71 |
|
frmx |
|
72 |
71
|
a1i |
|
73 |
|
simpl1 |
|
74 |
|
simpr |
|
75 |
72 73 74
|
fovrnd |
|
76 |
40 75
|
sselid |
|
77 |
|
zssq |
|
78 |
|
frmy |
|
79 |
78
|
a1i |
|
80 |
79 73 74
|
fovrnd |
|
81 |
77 80
|
sselid |
|
82 |
|
qirropth |
|
83 |
68 69 70 76 81 82
|
syl122anc |
|
84 |
|
rmxyval |
|
85 |
84
|
3ad2antl1 |
|
86 |
|
rmspecfund |
|
87 |
86
|
3ad2ant1 |
|
88 |
87
|
adantr |
|
89 |
88
|
oveq1d |
|
90 |
85 89
|
eqtr4d |
|
91 |
90
|
eqeq2d |
|
92 |
83 91
|
bitr3d |
|
93 |
92
|
rexbidva |
|
94 |
4 67 93
|
3bitr4d |
|