Metamath Proof Explorer


Theorem rmxyelqirr

Description: The solutions used to construct the X and Y sequences are quadratic irrationals. (Contributed by Stefan O'Rear, 21-Sep-2014) (Proof shortened by SN, 23-Dec-2024)

Ref Expression
Assertion rmxyelqirr A 2 N A + A 2 1 N a | c 0 d a = c + A 2 1 d

Proof

Step Hyp Ref Expression
1 rmspecnonsq A 2 A 2 1
2 1 adantr A 2 N A 2 1
3 pell14qrval A 2 1 Pell14QR A 2 1 = a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1
4 2 3 syl A 2 N Pell14QR A 2 1 = a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1
5 rabssab a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1
6 simpl a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a = c + A 2 1 d
7 6 reximi d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 d a = c + A 2 1 d
8 7 reximi c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 c 0 d a = c + A 2 1 d
9 8 ss2abi a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a | c 0 d a = c + A 2 1 d
10 5 9 sstri a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a | c 0 d a = c + A 2 1 d
11 4 10 eqsstrdi A 2 N Pell14QR A 2 1 a | c 0 d a = c + A 2 1 d
12 simpr A 2 N N
13 rmspecfund A 2 PellFund A 2 1 = A + A 2 1
14 13 adantr A 2 N PellFund A 2 1 = A + A 2 1
15 14 eqcomd A 2 N A + A 2 1 = PellFund A 2 1
16 15 oveq1d A 2 N A + A 2 1 N = PellFund A 2 1 N
17 oveq2 a = N PellFund A 2 1 a = PellFund A 2 1 N
18 17 rspceeqv N A + A 2 1 N = PellFund A 2 1 N a A + A 2 1 N = PellFund A 2 1 a
19 12 16 18 syl2anc A 2 N a A + A 2 1 N = PellFund A 2 1 a
20 pellfund14b A 2 1 A + A 2 1 N Pell14QR A 2 1 a A + A 2 1 N = PellFund A 2 1 a
21 2 20 syl A 2 N A + A 2 1 N Pell14QR A 2 1 a A + A 2 1 N = PellFund A 2 1 a
22 19 21 mpbird A 2 N A + A 2 1 N Pell14QR A 2 1
23 11 22 sseldd A 2 N A + A 2 1 N a | c 0 d a = c + A 2 1 d