Metamath Proof Explorer


Theorem rmxyelxp

Description: Lemma for frmx and frmy . (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxyelxp A 2 N b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N 0 ×

Proof

Step Hyp Ref Expression
1 rmxypairf1o A 2 b 0 × 1 st b + A 2 1 2 nd b : 0 × 1-1 onto a | c 0 d a = c + A 2 1 d
2 1 adantr A 2 N b 0 × 1 st b + A 2 1 2 nd b : 0 × 1-1 onto a | c 0 d a = c + A 2 1 d
3 rmxyelqirr A 2 N A + A 2 1 N a | c 0 d a = c + A 2 1 d
4 f1ocnvdm b 0 × 1 st b + A 2 1 2 nd b : 0 × 1-1 onto a | c 0 d a = c + A 2 1 d A + A 2 1 N a | c 0 d a = c + A 2 1 d b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N 0 ×
5 2 3 4 syl2anc A 2 N b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N 0 ×