Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
X and Y sequences 1: Definition and recurrence laws
rmxyelxp
Next ⟩
frmx
Metamath Proof Explorer
Ascii
Unicode
Theorem
rmxyelxp
Description:
Lemma for
frmx
and
frmy
.
(Contributed by
Stefan O'Rear
, 22-Sep-2014)
Ref
Expression
Assertion
rmxyelxp
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
b
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
b
+
A
2
−
1
⁢
2
nd
⁡
b
-1
⁡
A
+
A
2
−
1
N
∈
ℕ
0
×
ℤ
Proof
Step
Hyp
Ref
Expression
1
rmxypairf1o
⊢
A
∈
ℤ
≥
2
→
b
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
b
+
A
2
−
1
⁢
2
nd
⁡
b
:
ℕ
0
×
ℤ
⟶
1-1 onto
a
|
∃
c
∈
ℕ
0
∃
d
∈
ℤ
a
=
c
+
A
2
−
1
⁢
d
2
1
adantr
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
b
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
b
+
A
2
−
1
⁢
2
nd
⁡
b
:
ℕ
0
×
ℤ
⟶
1-1 onto
a
|
∃
c
∈
ℕ
0
∃
d
∈
ℤ
a
=
c
+
A
2
−
1
⁢
d
3
rmxyelqirr
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
A
+
A
2
−
1
N
∈
a
|
∃
c
∈
ℕ
0
∃
d
∈
ℤ
a
=
c
+
A
2
−
1
⁢
d
4
f1ocnvdm
⊢
b
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
b
+
A
2
−
1
⁢
2
nd
⁡
b
:
ℕ
0
×
ℤ
⟶
1-1 onto
a
|
∃
c
∈
ℕ
0
∃
d
∈
ℤ
a
=
c
+
A
2
−
1
⁢
d
∧
A
+
A
2
−
1
N
∈
a
|
∃
c
∈
ℕ
0
∃
d
∈
ℤ
a
=
c
+
A
2
−
1
⁢
d
→
b
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
b
+
A
2
−
1
⁢
2
nd
⁡
b
-1
⁡
A
+
A
2
−
1
N
∈
ℕ
0
×
ℤ
5
2
3
4
syl2anc
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
b
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
b
+
A
2
−
1
⁢
2
nd
⁡
b
-1
⁡
A
+
A
2
−
1
N
∈
ℕ
0
×
ℤ