Step |
Hyp |
Ref |
Expression |
1 |
|
znegcl |
|
2 |
|
rmxyval |
|
3 |
1 2
|
sylan2 |
|
4 |
|
rmxyval |
|
5 |
4
|
oveq2d |
|
6 |
|
rmbaserp |
|
7 |
6
|
rpcnd |
|
8 |
7
|
adantr |
|
9 |
6
|
rpne0d |
|
10 |
9
|
adantr |
|
11 |
|
simpr |
|
12 |
8 10 11
|
expclzd |
|
13 |
4 12
|
eqeltrd |
|
14 |
|
frmx |
|
15 |
14
|
fovcl |
|
16 |
15
|
nn0cnd |
|
17 |
|
rmspecnonsq |
|
18 |
17
|
eldifad |
|
19 |
18
|
nncnd |
|
20 |
19
|
adantr |
|
21 |
20
|
sqrtcld |
|
22 |
|
frmy |
|
23 |
22
|
fovcl |
|
24 |
23
|
zcnd |
|
25 |
24
|
negcld |
|
26 |
21 25
|
mulcld |
|
27 |
16 26
|
addcld |
|
28 |
8 10 11
|
expne0d |
|
29 |
4 28
|
eqnetrd |
|
30 |
21 24
|
mulneg2d |
|
31 |
30
|
oveq2d |
|
32 |
21 24
|
mulcld |
|
33 |
16 32
|
negsubd |
|
34 |
31 33
|
eqtrd |
|
35 |
34
|
oveq2d |
|
36 |
|
subsq |
|
37 |
16 32 36
|
syl2anc |
|
38 |
21 24
|
sqmuld |
|
39 |
20
|
sqsqrtd |
|
40 |
39
|
oveq1d |
|
41 |
38 40
|
eqtrd |
|
42 |
41
|
oveq2d |
|
43 |
|
rmxynorm |
|
44 |
42 43
|
eqtrd |
|
45 |
35 37 44
|
3eqtr2d |
|
46 |
13 27 29 45
|
mvllmuld |
|
47 |
8 10 11
|
expnegd |
|
48 |
5 46 47
|
3eqtr4rd |
|
49 |
3 48
|
eqtrd |
|
50 |
|
rmspecsqrtnq |
|
51 |
50
|
adantr |
|
52 |
|
nn0ssq |
|
53 |
14
|
fovcl |
|
54 |
1 53
|
sylan2 |
|
55 |
52 54
|
sselid |
|
56 |
|
zssq |
|
57 |
22
|
fovcl |
|
58 |
1 57
|
sylan2 |
|
59 |
56 58
|
sselid |
|
60 |
52 15
|
sselid |
|
61 |
56 23
|
sselid |
|
62 |
|
qnegcl |
|
63 |
61 62
|
syl |
|
64 |
|
qirropth |
|
65 |
51 55 59 60 63 64
|
syl122anc |
|
66 |
49 65
|
mpbid |
|