Metamath Proof Explorer


Theorem rmxyneg

Description: Negation law for X and Y sequences. JonesMatijasevic is inconsistent on whether the X and Y sequences have domain NN0 or ZZ ; we use ZZ consistently to avoid the need for a separate subtraction law. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxyneg A 2 N A X rm -N = A X rm N A Y rm -N = A Y rm N

Proof

Step Hyp Ref Expression
1 znegcl N N
2 rmxyval A 2 N A X rm -N + A 2 1 A Y rm -N = A + A 2 1 N
3 1 2 sylan2 A 2 N A X rm -N + A 2 1 A Y rm -N = A + A 2 1 N
4 rmxyval A 2 N A X rm N + A 2 1 A Y rm N = A + A 2 1 N
5 4 oveq2d A 2 N 1 A X rm N + A 2 1 A Y rm N = 1 A + A 2 1 N
6 rmbaserp A 2 A + A 2 1 +
7 6 rpcnd A 2 A + A 2 1
8 7 adantr A 2 N A + A 2 1
9 6 rpne0d A 2 A + A 2 1 0
10 9 adantr A 2 N A + A 2 1 0
11 simpr A 2 N N
12 8 10 11 expclzd A 2 N A + A 2 1 N
13 4 12 eqeltrd A 2 N A X rm N + A 2 1 A Y rm N
14 frmx X rm : 2 × 0
15 14 fovcl A 2 N A X rm N 0
16 15 nn0cnd A 2 N A X rm N
17 rmspecnonsq A 2 A 2 1
18 17 eldifad A 2 A 2 1
19 18 nncnd A 2 A 2 1
20 19 adantr A 2 N A 2 1
21 20 sqrtcld A 2 N A 2 1
22 frmy Y rm : 2 ×
23 22 fovcl A 2 N A Y rm N
24 23 zcnd A 2 N A Y rm N
25 24 negcld A 2 N A Y rm N
26 21 25 mulcld A 2 N A 2 1 A Y rm N
27 16 26 addcld A 2 N A X rm N + A 2 1 A Y rm N
28 8 10 11 expne0d A 2 N A + A 2 1 N 0
29 4 28 eqnetrd A 2 N A X rm N + A 2 1 A Y rm N 0
30 21 24 mulneg2d A 2 N A 2 1 A Y rm N = A 2 1 A Y rm N
31 30 oveq2d A 2 N A X rm N + A 2 1 A Y rm N = A X rm N + A 2 1 A Y rm N
32 21 24 mulcld A 2 N A 2 1 A Y rm N
33 16 32 negsubd A 2 N A X rm N + A 2 1 A Y rm N = A X rm N A 2 1 A Y rm N
34 31 33 eqtrd A 2 N A X rm N + A 2 1 A Y rm N = A X rm N A 2 1 A Y rm N
35 34 oveq2d A 2 N A X rm N + A 2 1 A Y rm N A X rm N + A 2 1 A Y rm N = A X rm N + A 2 1 A Y rm N A X rm N A 2 1 A Y rm N
36 subsq A X rm N A 2 1 A Y rm N A X rm N 2 A 2 1 A Y rm N 2 = A X rm N + A 2 1 A Y rm N A X rm N A 2 1 A Y rm N
37 16 32 36 syl2anc A 2 N A X rm N 2 A 2 1 A Y rm N 2 = A X rm N + A 2 1 A Y rm N A X rm N A 2 1 A Y rm N
38 21 24 sqmuld A 2 N A 2 1 A Y rm N 2 = A 2 1 2 A Y rm N 2
39 20 sqsqrtd A 2 N A 2 1 2 = A 2 1
40 39 oveq1d A 2 N A 2 1 2 A Y rm N 2 = A 2 1 A Y rm N 2
41 38 40 eqtrd A 2 N A 2 1 A Y rm N 2 = A 2 1 A Y rm N 2
42 41 oveq2d A 2 N A X rm N 2 A 2 1 A Y rm N 2 = A X rm N 2 A 2 1 A Y rm N 2
43 rmxynorm A 2 N A X rm N 2 A 2 1 A Y rm N 2 = 1
44 42 43 eqtrd A 2 N A X rm N 2 A 2 1 A Y rm N 2 = 1
45 35 37 44 3eqtr2d A 2 N A X rm N + A 2 1 A Y rm N A X rm N + A 2 1 A Y rm N = 1
46 13 27 29 45 mvllmuld A 2 N A X rm N + A 2 1 A Y rm N = 1 A X rm N + A 2 1 A Y rm N
47 8 10 11 expnegd A 2 N A + A 2 1 N = 1 A + A 2 1 N
48 5 46 47 3eqtr4rd A 2 N A + A 2 1 N = A X rm N + A 2 1 A Y rm N
49 3 48 eqtrd A 2 N A X rm -N + A 2 1 A Y rm -N = A X rm N + A 2 1 A Y rm N
50 rmspecsqrtnq A 2 A 2 1
51 50 adantr A 2 N A 2 1
52 nn0ssq 0
53 14 fovcl A 2 N A X rm -N 0
54 1 53 sylan2 A 2 N A X rm -N 0
55 52 54 sselid A 2 N A X rm -N
56 zssq
57 22 fovcl A 2 N A Y rm -N
58 1 57 sylan2 A 2 N A Y rm -N
59 56 58 sselid A 2 N A Y rm -N
60 52 15 sselid A 2 N A X rm N
61 56 23 sselid A 2 N A Y rm N
62 qnegcl A Y rm N A Y rm N
63 61 62 syl A 2 N A Y rm N
64 qirropth A 2 1 A X rm -N A Y rm -N A X rm N A Y rm N A X rm -N + A 2 1 A Y rm -N = A X rm N + A 2 1 A Y rm N A X rm -N = A X rm N A Y rm -N = A Y rm N
65 51 55 59 60 63 64 syl122anc A 2 N A X rm -N + A 2 1 A Y rm -N = A X rm N + A 2 1 A Y rm N A X rm -N = A X rm N A Y rm -N = A Y rm N
66 49 65 mpbid A 2 N A X rm -N = A X rm N A Y rm -N = A Y rm N