Metamath Proof Explorer


Theorem rmxynorm

Description: The X and Y sequences define a solution to the corresponding Pell equation. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxynorm A 2 N A X rm N 2 A 2 1 A Y rm N 2 = 1

Proof

Step Hyp Ref Expression
1 simpr A 2 N N
2 eqidd A 2 A X rm N = A X rm N
3 eqidd N A Y rm N = A Y rm N
4 2 3 anim12i A 2 N A X rm N = A X rm N A Y rm N = A Y rm N
5 oveq2 a = N A X rm a = A X rm N
6 5 eqeq2d a = N A X rm N = A X rm a A X rm N = A X rm N
7 oveq2 a = N A Y rm a = A Y rm N
8 7 eqeq2d a = N A Y rm N = A Y rm a A Y rm N = A Y rm N
9 6 8 anbi12d a = N A X rm N = A X rm a A Y rm N = A Y rm a A X rm N = A X rm N A Y rm N = A Y rm N
10 9 rspcev N A X rm N = A X rm N A Y rm N = A Y rm N a A X rm N = A X rm a A Y rm N = A Y rm a
11 1 4 10 syl2anc A 2 N a A X rm N = A X rm a A Y rm N = A Y rm a
12 simpl A 2 N A 2
13 frmx X rm : 2 × 0
14 13 fovcl A 2 N A X rm N 0
15 frmy Y rm : 2 ×
16 15 fovcl A 2 N A Y rm N
17 rmxycomplete A 2 A X rm N 0 A Y rm N A X rm N 2 A 2 1 A Y rm N 2 = 1 a A X rm N = A X rm a A Y rm N = A Y rm a
18 12 14 16 17 syl3anc A 2 N A X rm N 2 A 2 1 A Y rm N 2 = 1 a A X rm N = A X rm a A Y rm N = A Y rm a
19 11 18 mpbird A 2 N A X rm N 2 A 2 1 A Y rm N 2 = 1