Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
|
2 |
|
eqid |
|
3 |
1 2
|
fnmpti |
|
4 |
3
|
a1i |
|
5 |
2
|
rnmpt |
|
6 |
|
vex |
|
7 |
|
vex |
|
8 |
6 7
|
op1std |
|
9 |
6 7
|
op2ndd |
|
10 |
9
|
oveq2d |
|
11 |
8 10
|
oveq12d |
|
12 |
11
|
eqeq2d |
|
13 |
12
|
rexxp |
|
14 |
13
|
bicomi |
|
15 |
14
|
a1i |
|
16 |
15
|
abbidv |
|
17 |
5 16
|
eqtr4id |
|
18 |
|
fveq2 |
|
19 |
|
fveq2 |
|
20 |
19
|
oveq2d |
|
21 |
18 20
|
oveq12d |
|
22 |
|
ovex |
|
23 |
21 2 22
|
fvmpt |
|
24 |
23
|
ad2antrl |
|
25 |
|
fveq2 |
|
26 |
|
fveq2 |
|
27 |
26
|
oveq2d |
|
28 |
25 27
|
oveq12d |
|
29 |
|
ovex |
|
30 |
28 2 29
|
fvmpt |
|
31 |
30
|
ad2antll |
|
32 |
24 31
|
eqeq12d |
|
33 |
|
rmspecsqrtnq |
|
34 |
33
|
adantr |
|
35 |
|
nn0ssq |
|
36 |
|
xp1st |
|
37 |
36
|
ad2antrl |
|
38 |
35 37
|
sselid |
|
39 |
|
xp2nd |
|
40 |
39
|
ad2antrl |
|
41 |
|
zq |
|
42 |
40 41
|
syl |
|
43 |
|
xp1st |
|
44 |
43
|
ad2antll |
|
45 |
35 44
|
sselid |
|
46 |
|
xp2nd |
|
47 |
46
|
ad2antll |
|
48 |
|
zq |
|
49 |
47 48
|
syl |
|
50 |
|
qirropth |
|
51 |
34 38 42 45 49 50
|
syl122anc |
|
52 |
51
|
biimpd |
|
53 |
|
xpopth |
|
54 |
53
|
adantl |
|
55 |
52 54
|
sylibd |
|
56 |
32 55
|
sylbid |
|
57 |
56
|
ralrimivva |
|
58 |
|
dff1o6 |
|
59 |
4 17 57 58
|
syl3anbrc |
|