Metamath Proof Explorer


Theorem rmxypos

Description: For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Assertion rmxypos A 2 N 0 0 < A X rm N 0 A Y rm N

Proof

Step Hyp Ref Expression
1 oveq2 a = 0 A X rm a = A X rm 0
2 1 breq2d a = 0 0 < A X rm a 0 < A X rm 0
3 oveq2 a = 0 A Y rm a = A Y rm 0
4 3 breq2d a = 0 0 A Y rm a 0 A Y rm 0
5 2 4 anbi12d a = 0 0 < A X rm a 0 A Y rm a 0 < A X rm 0 0 A Y rm 0
6 5 imbi2d a = 0 A 2 0 < A X rm a 0 A Y rm a A 2 0 < A X rm 0 0 A Y rm 0
7 oveq2 a = b A X rm a = A X rm b
8 7 breq2d a = b 0 < A X rm a 0 < A X rm b
9 oveq2 a = b A Y rm a = A Y rm b
10 9 breq2d a = b 0 A Y rm a 0 A Y rm b
11 8 10 anbi12d a = b 0 < A X rm a 0 A Y rm a 0 < A X rm b 0 A Y rm b
12 11 imbi2d a = b A 2 0 < A X rm a 0 A Y rm a A 2 0 < A X rm b 0 A Y rm b
13 oveq2 a = b + 1 A X rm a = A X rm b + 1
14 13 breq2d a = b + 1 0 < A X rm a 0 < A X rm b + 1
15 oveq2 a = b + 1 A Y rm a = A Y rm b + 1
16 15 breq2d a = b + 1 0 A Y rm a 0 A Y rm b + 1
17 14 16 anbi12d a = b + 1 0 < A X rm a 0 A Y rm a 0 < A X rm b + 1 0 A Y rm b + 1
18 17 imbi2d a = b + 1 A 2 0 < A X rm a 0 A Y rm a A 2 0 < A X rm b + 1 0 A Y rm b + 1
19 oveq2 a = N A X rm a = A X rm N
20 19 breq2d a = N 0 < A X rm a 0 < A X rm N
21 oveq2 a = N A Y rm a = A Y rm N
22 21 breq2d a = N 0 A Y rm a 0 A Y rm N
23 20 22 anbi12d a = N 0 < A X rm a 0 A Y rm a 0 < A X rm N 0 A Y rm N
24 23 imbi2d a = N A 2 0 < A X rm a 0 A Y rm a A 2 0 < A X rm N 0 A Y rm N
25 0lt1 0 < 1
26 rmx0 A 2 A X rm 0 = 1
27 25 26 breqtrrid A 2 0 < A X rm 0
28 0le0 0 0
29 rmy0 A 2 A Y rm 0 = 0
30 28 29 breqtrrid A 2 0 A Y rm 0
31 27 30 jca A 2 0 < A X rm 0 0 A Y rm 0
32 simp2 b 0 A 2 0 < A X rm b 0 A Y rm b A 2
33 nn0z b 0 b
34 33 3ad2ant1 b 0 A 2 0 < A X rm b 0 A Y rm b b
35 frmx X rm : 2 × 0
36 35 fovcl A 2 b A X rm b 0
37 32 34 36 syl2anc b 0 A 2 0 < A X rm b 0 A Y rm b A X rm b 0
38 37 nn0red b 0 A 2 0 < A X rm b 0 A Y rm b A X rm b
39 eluzelre A 2 A
40 39 3ad2ant2 b 0 A 2 0 < A X rm b 0 A Y rm b A
41 38 40 remulcld b 0 A 2 0 < A X rm b 0 A Y rm b A X rm b A
42 rmspecpos A 2 A 2 1 +
43 42 rpred A 2 A 2 1
44 43 3ad2ant2 b 0 A 2 0 < A X rm b 0 A Y rm b A 2 1
45 frmy Y rm : 2 ×
46 45 fovcl A 2 b A Y rm b
47 32 34 46 syl2anc b 0 A 2 0 < A X rm b 0 A Y rm b A Y rm b
48 47 zred b 0 A 2 0 < A X rm b 0 A Y rm b A Y rm b
49 44 48 remulcld b 0 A 2 0 < A X rm b 0 A Y rm b A 2 1 A Y rm b
50 simp3l b 0 A 2 0 < A X rm b 0 A Y rm b 0 < A X rm b
51 eluz2nn A 2 A
52 51 nngt0d A 2 0 < A
53 52 3ad2ant2 b 0 A 2 0 < A X rm b 0 A Y rm b 0 < A
54 38 40 50 53 mulgt0d b 0 A 2 0 < A X rm b 0 A Y rm b 0 < A X rm b A
55 42 rpge0d A 2 0 A 2 1
56 55 3ad2ant2 b 0 A 2 0 < A X rm b 0 A Y rm b 0 A 2 1
57 simp3r b 0 A 2 0 < A X rm b 0 A Y rm b 0 A Y rm b
58 44 48 56 57 mulge0d b 0 A 2 0 < A X rm b 0 A Y rm b 0 A 2 1 A Y rm b
59 41 49 54 58 addgtge0d b 0 A 2 0 < A X rm b 0 A Y rm b 0 < A X rm b A + A 2 1 A Y rm b
60 rmxp1 A 2 b A X rm b + 1 = A X rm b A + A 2 1 A Y rm b
61 32 34 60 syl2anc b 0 A 2 0 < A X rm b 0 A Y rm b A X rm b + 1 = A X rm b A + A 2 1 A Y rm b
62 59 61 breqtrrd b 0 A 2 0 < A X rm b 0 A Y rm b 0 < A X rm b + 1
63 48 40 remulcld b 0 A 2 0 < A X rm b 0 A Y rm b A Y rm b A
64 eluzge2nn0 A 2 A 0
65 64 nn0ge0d A 2 0 A
66 65 3ad2ant2 b 0 A 2 0 < A X rm b 0 A Y rm b 0 A
67 48 40 57 66 mulge0d b 0 A 2 0 < A X rm b 0 A Y rm b 0 A Y rm b A
68 37 nn0ge0d b 0 A 2 0 < A X rm b 0 A Y rm b 0 A X rm b
69 63 38 67 68 addge0d b 0 A 2 0 < A X rm b 0 A Y rm b 0 A Y rm b A + A X rm b
70 rmyp1 A 2 b A Y rm b + 1 = A Y rm b A + A X rm b
71 32 34 70 syl2anc b 0 A 2 0 < A X rm b 0 A Y rm b A Y rm b + 1 = A Y rm b A + A X rm b
72 69 71 breqtrrd b 0 A 2 0 < A X rm b 0 A Y rm b 0 A Y rm b + 1
73 62 72 jca b 0 A 2 0 < A X rm b 0 A Y rm b 0 < A X rm b + 1 0 A Y rm b + 1
74 73 3exp b 0 A 2 0 < A X rm b 0 A Y rm b 0 < A X rm b + 1 0 A Y rm b + 1
75 74 a2d b 0 A 2 0 < A X rm b 0 A Y rm b A 2 0 < A X rm b + 1 0 A Y rm b + 1
76 6 12 18 24 31 75 nn0ind N 0 A 2 0 < A X rm N 0 A Y rm N
77 76 impcom A 2 N 0 0 < A X rm N 0 A Y rm N