Metamath Proof Explorer


Theorem rmyabs

Description: rmY commutes with abs . (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Assertion rmyabs A 2 B A Y rm B = A Y rm B

Proof

Step Hyp Ref Expression
1 frmy Y rm : 2 ×
2 1 fovcl A 2 a A Y rm a
3 2 zred A 2 a A Y rm a
4 simp1 A 2 a 0 a A 2
5 elnn0z a 0 a 0 a
6 5 biimpri a 0 a a 0
7 6 3adant1 A 2 a 0 a a 0
8 rmxypos A 2 a 0 0 < A X rm a 0 A Y rm a
9 4 7 8 syl2anc A 2 a 0 a 0 < A X rm a 0 A Y rm a
10 9 simprd A 2 a 0 a 0 A Y rm a
11 rmyneg A 2 b A Y rm b = A Y rm b
12 oveq2 a = b A Y rm a = A Y rm b
13 oveq2 a = b A Y rm a = A Y rm b
14 oveq2 a = B A Y rm a = A Y rm B
15 oveq2 a = B A Y rm a = A Y rm B
16 3 10 11 12 13 14 15 oddcomabszz A 2 B A Y rm B = A Y rm B