Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
X and Y sequences 2: Order properties
rmyabs
Next ⟩
jm2.24nn
Metamath Proof Explorer
Ascii
Unicode
Theorem
rmyabs
Description:
rmY
commutes with
abs
.
(Contributed by
Stefan O'Rear
, 26-Sep-2014)
Ref
Expression
Assertion
rmyabs
⊢
A
∈
ℤ
≥
2
∧
B
∈
ℤ
→
A
Y
rm
B
=
A
Y
rm
B
Proof
Step
Hyp
Ref
Expression
1
frmy
⊢
Y
rm
:
ℤ
≥
2
×
ℤ
⟶
ℤ
2
1
fovcl
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
→
A
Y
rm
a
∈
ℤ
3
2
zred
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
→
A
Y
rm
a
∈
ℝ
4
simp1
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
∧
0
≤
a
→
A
∈
ℤ
≥
2
5
elnn0z
⊢
a
∈
ℕ
0
↔
a
∈
ℤ
∧
0
≤
a
6
5
biimpri
⊢
a
∈
ℤ
∧
0
≤
a
→
a
∈
ℕ
0
7
6
3adant1
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
∧
0
≤
a
→
a
∈
ℕ
0
8
rmxypos
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℕ
0
→
0
<
A
X
rm
a
∧
0
≤
A
Y
rm
a
9
4
7
8
syl2anc
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
∧
0
≤
a
→
0
<
A
X
rm
a
∧
0
≤
A
Y
rm
a
10
9
simprd
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
∧
0
≤
a
→
0
≤
A
Y
rm
a
11
rmyneg
⊢
A
∈
ℤ
≥
2
∧
b
∈
ℤ
→
A
Y
rm
−
b
=
−
A
Y
rm
b
12
oveq2
⊢
a
=
b
→
A
Y
rm
a
=
A
Y
rm
b
13
oveq2
⊢
a
=
−
b
→
A
Y
rm
a
=
A
Y
rm
−
b
14
oveq2
⊢
a
=
B
→
A
Y
rm
a
=
A
Y
rm
B
15
oveq2
⊢
a
=
B
→
A
Y
rm
a
=
A
Y
rm
B
16
3
10
11
12
13
14
15
oddcomabszz
⊢
A
∈
ℤ
≥
2
∧
B
∈
ℤ
→
A
Y
rm
B
=
A
Y
rm
B