Metamath Proof Explorer


Theorem rmynn

Description: rmY is positive for positive arguments. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion rmynn A 2 N A Y rm N

Proof

Step Hyp Ref Expression
1 nnz N N
2 frmy Y rm : 2 ×
3 2 fovcl A 2 N A Y rm N
4 1 3 sylan2 A 2 N A Y rm N
5 rmy0 A 2 A Y rm 0 = 0
6 5 adantr A 2 N A Y rm 0 = 0
7 nngt0 N 0 < N
8 7 adantl A 2 N 0 < N
9 simpl A 2 N A 2
10 0zd A 2 N 0
11 1 adantl A 2 N N
12 ltrmy A 2 0 N 0 < N A Y rm 0 < A Y rm N
13 9 10 11 12 syl3anc A 2 N 0 < N A Y rm 0 < A Y rm N
14 8 13 mpbid A 2 N A Y rm 0 < A Y rm N
15 6 14 eqbrtrrd A 2 N 0 < A Y rm N
16 elnnz A Y rm N A Y rm N 0 < A Y rm N
17 4 15 16 sylanbrc A 2 N A Y rm N