Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
X and Y sequences 2: Order properties
rmynn
Next ⟩
rmynn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
rmynn
Description:
rmY
is positive for positive arguments.
(Contributed by
Stefan O'Rear
, 16-Oct-2014)
Ref
Expression
Assertion
rmynn
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
A
Y
rm
N
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
nnz
⊢
N
∈
ℕ
→
N
∈
ℤ
2
frmy
⊢
Y
rm
:
ℤ
≥
2
×
ℤ
⟶
ℤ
3
2
fovcl
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
A
Y
rm
N
∈
ℤ
4
1
3
sylan2
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
A
Y
rm
N
∈
ℤ
5
rmy0
⊢
A
∈
ℤ
≥
2
→
A
Y
rm
0
=
0
6
5
adantr
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
A
Y
rm
0
=
0
7
nngt0
⊢
N
∈
ℕ
→
0
<
N
8
7
adantl
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
0
<
N
9
simpl
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
A
∈
ℤ
≥
2
10
0zd
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
0
∈
ℤ
11
1
adantl
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
N
∈
ℤ
12
ltrmy
⊢
A
∈
ℤ
≥
2
∧
0
∈
ℤ
∧
N
∈
ℤ
→
0
<
N
↔
A
Y
rm
0
<
A
Y
rm
N
13
9
10
11
12
syl3anc
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
0
<
N
↔
A
Y
rm
0
<
A
Y
rm
N
14
8
13
mpbid
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
A
Y
rm
0
<
A
Y
rm
N
15
6
14
eqbrtrrd
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
0
<
A
Y
rm
N
16
elnnz
⊢
A
Y
rm
N
∈
ℕ
↔
A
Y
rm
N
∈
ℤ
∧
0
<
A
Y
rm
N
17
4
15
16
sylanbrc
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℕ
→
A
Y
rm
N
∈
ℕ