Metamath Proof Explorer


Theorem rmynn0

Description: rmY is nonnegative for nonnegative arguments. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion rmynn0 A 2 N 0 A Y rm N 0

Proof

Step Hyp Ref Expression
1 nn0z N 0 N
2 frmy Y rm : 2 ×
3 2 fovcl A 2 N A Y rm N
4 1 3 sylan2 A 2 N 0 A Y rm N
5 rmxypos A 2 N 0 0 < A X rm N 0 A Y rm N
6 5 simprd A 2 N 0 0 A Y rm N
7 elnn0z A Y rm N 0 A Y rm N 0 A Y rm N
8 4 6 7 sylanbrc A 2 N 0 A Y rm N 0