Metamath Proof Explorer


Theorem rmyp1

Description: Special addition of 1 formula for Y sequence. Part 2 of equation 2.9 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Assertion rmyp1 A 2 N A Y rm N + 1 = A Y rm N A + A X rm N

Proof

Step Hyp Ref Expression
1 1z 1
2 rmyadd A 2 N 1 A Y rm N + 1 = A Y rm N A X rm 1 + A X rm N A Y rm 1
3 1 2 mp3an3 A 2 N A Y rm N + 1 = A Y rm N A X rm 1 + A X rm N A Y rm 1
4 rmx1 A 2 A X rm 1 = A
5 4 oveq2d A 2 A Y rm N A X rm 1 = A Y rm N A
6 5 adantr A 2 N A Y rm N A X rm 1 = A Y rm N A
7 rmy1 A 2 A Y rm 1 = 1
8 7 oveq2d A 2 A X rm N A Y rm 1 = A X rm N 1
9 8 adantr A 2 N A X rm N A Y rm 1 = A X rm N 1
10 frmx X rm : 2 × 0
11 10 fovcl A 2 N A X rm N 0
12 11 nn0cnd A 2 N A X rm N
13 12 mulid1d A 2 N A X rm N 1 = A X rm N
14 9 13 eqtrd A 2 N A X rm N A Y rm 1 = A X rm N
15 6 14 oveq12d A 2 N A Y rm N A X rm 1 + A X rm N A Y rm 1 = A Y rm N A + A X rm N
16 3 15 eqtrd A 2 N A Y rm N + 1 = A Y rm N A + A X rm N