Metamath Proof Explorer


Theorem rn1st

Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem , with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypothesis rn1st.1 _ x B
Assertion rn1st B ω ran x B C ω

Proof

Step Hyp Ref Expression
1 rn1st.1 _ x B
2 ordom Ord ω
3 reldom Rel
4 3 brrelex2i B ω ω V
5 elong ω V ω On Ord ω
6 4 5 syl B ω ω On Ord ω
7 2 6 mpbiri B ω ω On
8 ondomen ω On B ω B dom card
9 7 8 mpancom B ω B dom card
10 eqid x B C = x B C
11 1 10 dmmptssf dom x B C B
12 ssnum B dom card dom x B C B dom x B C dom card
13 9 11 12 sylancl B ω dom x B C dom card
14 funmpt Fun x B C
15 funforn Fun x B C x B C : dom x B C onto ran x B C
16 14 15 mpbi x B C : dom x B C onto ran x B C
17 fodomnum dom x B C dom card x B C : dom x B C onto ran x B C ran x B C dom x B C
18 13 16 17 mpisyl B ω ran x B C dom x B C
19 ctex B ω B V
20 ssdomg B V dom x B C B dom x B C B
21 19 11 20 mpisyl B ω dom x B C B
22 domtr dom x B C B B ω dom x B C ω
23 21 22 mpancom B ω dom x B C ω
24 domtr ran x B C dom x B C dom x B C ω ran x B C ω
25 18 23 24 syl2anc B ω ran x B C ω