Metamath Proof Explorer


Theorem rnascl

Description: The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses rnascl.a A = algSc W
rnascl.o 1 ˙ = 1 W
rnascl.n N = LSpan W
Assertion rnascl W AssAlg ran A = N 1 ˙

Proof

Step Hyp Ref Expression
1 rnascl.a A = algSc W
2 rnascl.o 1 ˙ = 1 W
3 rnascl.n N = LSpan W
4 eqid Scalar W = Scalar W
5 eqid Base Scalar W = Base Scalar W
6 eqid W = W
7 1 4 5 6 2 asclfval A = y Base Scalar W y W 1 ˙
8 7 rnmpt ran A = x | y Base Scalar W x = y W 1 ˙
9 assalmod W AssAlg W LMod
10 assaring W AssAlg W Ring
11 eqid Base W = Base W
12 11 2 ringidcl W Ring 1 ˙ Base W
13 10 12 syl W AssAlg 1 ˙ Base W
14 4 5 11 6 3 lspsn W LMod 1 ˙ Base W N 1 ˙ = x | y Base Scalar W x = y W 1 ˙
15 9 13 14 syl2anc W AssAlg N 1 ˙ = x | y Base Scalar W x = y W 1 ˙
16 8 15 eqtr4id W AssAlg ran A = N 1 ˙