Metamath Proof Explorer


Theorem rnasclassa

Description: The scalar multiples of the unit vector form a subalgebra of the vectors. (Contributed by SN, 16-Nov-2023)

Ref Expression
Hypotheses rnasclassa.a A = algSc W
rnasclassa.u U = W 𝑠 ran A
rnasclassa.w φ W AssAlg
Assertion rnasclassa φ U AssAlg

Proof

Step Hyp Ref Expression
1 rnasclassa.a A = algSc W
2 rnasclassa.u U = W 𝑠 ran A
3 rnasclassa.w φ W AssAlg
4 ssidd φ ran A ran A
5 1 3 rnasclsubrg φ ran A SubRing W
6 eqid LSubSp W = LSubSp W
7 1 6 issubassa2 W AssAlg ran A SubRing W ran A LSubSp W ran A ran A
8 2 6 issubassa3 W AssAlg ran A SubRing W ran A LSubSp W U AssAlg
9 8 expr W AssAlg ran A SubRing W ran A LSubSp W U AssAlg
10 7 9 sylbird W AssAlg ran A SubRing W ran A ran A U AssAlg
11 3 5 10 syl2anc φ ran A ran A U AssAlg
12 4 11 mpd φ U AssAlg