Metamath Proof Explorer


Theorem rnasclmulcl

Description: (Vector) multiplication is closed for scalar multiples of the unit vector. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses rnasclmulcl.c C = algSc W
rnasclmulcl.x × ˙ = W
rnasclmulcl.w φ W AssAlg
Assertion rnasclmulcl φ X ran C Y ran C X × ˙ Y ran C

Proof

Step Hyp Ref Expression
1 rnasclmulcl.c C = algSc W
2 rnasclmulcl.x × ˙ = W
3 rnasclmulcl.w φ W AssAlg
4 1 3 rnasclsubrg φ ran C SubRing W
5 2 subrgmcl ran C SubRing W X ran C Y ran C X × ˙ Y ran C
6 4 5 syl3an1 φ X ran C Y ran C X × ˙ Y ran C
7 6 3expb φ X ran C Y ran C X × ˙ Y ran C