Database
BASIC TOPOLOGY
Metric spaces
Open sets of a metric space
rnblopn
Next ⟩
blopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
rnblopn
Description:
A ball of a metric space is an open set.
(Contributed by
NM
, 12-Sep-2006)
Ref
Expression
Hypothesis
mopni.1
⊢
J
=
MetOpen
⁡
D
Assertion
rnblopn
⊢
D
∈
∞Met
⁡
X
∧
B
∈
ran
⁡
ball
⁡
D
→
B
∈
J
Proof
Step
Hyp
Ref
Expression
1
mopni.1
⊢
J
=
MetOpen
⁡
D
2
1
blssopn
⊢
D
∈
∞Met
⁡
X
→
ran
⁡
ball
⁡
D
⊆
J
3
2
sselda
⊢
D
∈
∞Met
⁡
X
∧
B
∈
ran
⁡
ball
⁡
D
→
B
∈
J