Metamath Proof Explorer


Theorem rnblopn

Description: A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion rnblopn D ∞Met X B ran ball D B J

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 1 blssopn D ∞Met X ran ball D J
3 2 sselda D ∞Met X B ran ball D B J