Metamath Proof Explorer


Theorem rnbra

Description: The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion rnbra ran bra = LinFn ContFn

Proof

Step Hyp Ref Expression
1 lnfncnbd t LinFn t ContFn norm fn t
2 1 pm5.32i t LinFn t ContFn t LinFn norm fn t
3 elin t LinFn ContFn t LinFn t ContFn
4 ax-hilex V
5 4 mptex y y ih x V
6 df-bra bra = x y y ih x
7 5 6 fnmpti bra Fn
8 fvelrnb bra Fn t ran bra x bra x = t
9 7 8 ax-mp t ran bra x bra x = t
10 bralnfn x bra x LinFn
11 brabn x norm fn bra x
12 10 11 jca x bra x LinFn norm fn bra x
13 eleq1 bra x = t bra x LinFn t LinFn
14 fveq2 bra x = t norm fn bra x = norm fn t
15 14 eleq1d bra x = t norm fn bra x norm fn t
16 13 15 anbi12d bra x = t bra x LinFn norm fn bra x t LinFn norm fn t
17 12 16 syl5ibcom x bra x = t t LinFn norm fn t
18 17 rexlimiv x bra x = t t LinFn norm fn t
19 riesz1 t LinFn norm fn t x y t y = y ih x
20 19 biimpa t LinFn norm fn t x y t y = y ih x
21 braval x y bra x y = y ih x
22 eqtr3 bra x y = y ih x t y = y ih x bra x y = t y
23 22 ex bra x y = y ih x t y = y ih x bra x y = t y
24 21 23 syl x y t y = y ih x bra x y = t y
25 24 ralimdva x y t y = y ih x y bra x y = t y
26 25 adantl t LinFn norm fn t x y t y = y ih x y bra x y = t y
27 brafn x bra x :
28 lnfnf t LinFn t :
29 28 adantr t LinFn norm fn t t :
30 ffn bra x : bra x Fn
31 ffn t : t Fn
32 eqfnfv bra x Fn t Fn bra x = t y bra x y = t y
33 30 31 32 syl2an bra x : t : bra x = t y bra x y = t y
34 27 29 33 syl2anr t LinFn norm fn t x bra x = t y bra x y = t y
35 26 34 sylibrd t LinFn norm fn t x y t y = y ih x bra x = t
36 35 reximdva t LinFn norm fn t x y t y = y ih x x bra x = t
37 20 36 mpd t LinFn norm fn t x bra x = t
38 18 37 impbii x bra x = t t LinFn norm fn t
39 9 38 bitri t ran bra t LinFn norm fn t
40 2 3 39 3bitr4ri t ran bra t LinFn ContFn
41 40 eqriv ran bra = LinFn ContFn