Metamath Proof Explorer


Theorem rnco

Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion rnco ran A B = ran A ran B

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 brco x A B y z x B z z A y
4 3 exbii x x A B y x z x B z z A y
5 excom x z x B z z A y z x x B z z A y
6 vex z V
7 6 elrn z ran B x x B z
8 7 anbi1i z ran B z A y x x B z z A y
9 2 brresi z A ran B y z ran B z A y
10 19.41v x x B z z A y x x B z z A y
11 8 9 10 3bitr4ri x x B z z A y z A ran B y
12 11 exbii z x x B z z A y z z A ran B y
13 4 5 12 3bitri x x A B y z z A ran B y
14 2 elrn y ran A B x x A B y
15 2 elrn y ran A ran B z z A ran B y
16 13 14 15 3bitr4i y ran A B y ran A ran B
17 16 eqriv ran A B = ran A ran B