Metamath Proof Explorer


Theorem rncoeq

Description: Range of a composition. (Contributed by NM, 19-Mar-1998)

Ref Expression
Assertion rncoeq dom A = ran B ran A B = ran A

Proof

Step Hyp Ref Expression
1 dmcoeq dom B -1 = ran A -1 dom B -1 A -1 = dom A -1
2 eqcom dom A = ran B ran B = dom A
3 df-rn ran B = dom B -1
4 dfdm4 dom A = ran A -1
5 3 4 eqeq12i ran B = dom A dom B -1 = ran A -1
6 2 5 bitri dom A = ran B dom B -1 = ran A -1
7 df-rn ran A B = dom A B -1
8 cnvco A B -1 = B -1 A -1
9 8 dmeqi dom A B -1 = dom B -1 A -1
10 7 9 eqtri ran A B = dom B -1 A -1
11 df-rn ran A = dom A -1
12 10 11 eqeq12i ran A B = ran A dom B -1 A -1 = dom A -1
13 1 6 12 3imtr4i dom A = ran B ran A B = ran A