Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
rncoeq
Next ⟩
reseq1
Metamath Proof Explorer
Ascii
Unicode
Theorem
rncoeq
Description:
Range of a composition.
(Contributed by
NM
, 19-Mar-1998)
Ref
Expression
Assertion
rncoeq
⊢
dom
⁡
A
=
ran
⁡
B
→
ran
⁡
A
∘
B
=
ran
⁡
A
Proof
Step
Hyp
Ref
Expression
1
dmcoeq
⊢
dom
⁡
B
-1
=
ran
⁡
A
-1
→
dom
⁡
B
-1
∘
A
-1
=
dom
⁡
A
-1
2
eqcom
⊢
dom
⁡
A
=
ran
⁡
B
↔
ran
⁡
B
=
dom
⁡
A
3
df-rn
⊢
ran
⁡
B
=
dom
⁡
B
-1
4
dfdm4
⊢
dom
⁡
A
=
ran
⁡
A
-1
5
3
4
eqeq12i
⊢
ran
⁡
B
=
dom
⁡
A
↔
dom
⁡
B
-1
=
ran
⁡
A
-1
6
2
5
bitri
⊢
dom
⁡
A
=
ran
⁡
B
↔
dom
⁡
B
-1
=
ran
⁡
A
-1
7
df-rn
⊢
ran
⁡
A
∘
B
=
dom
⁡
A
∘
B
-1
8
cnvco
⊢
A
∘
B
-1
=
B
-1
∘
A
-1
9
8
dmeqi
⊢
dom
⁡
A
∘
B
-1
=
dom
⁡
B
-1
∘
A
-1
10
7
9
eqtri
⊢
ran
⁡
A
∘
B
=
dom
⁡
B
-1
∘
A
-1
11
df-rn
⊢
ran
⁡
A
=
dom
⁡
A
-1
12
10
11
eqeq12i
⊢
ran
⁡
A
∘
B
=
ran
⁡
A
↔
dom
⁡
B
-1
∘
A
-1
=
dom
⁡
A
-1
13
1
6
12
3imtr4i
⊢
dom
⁡
A
=
ran
⁡
B
→
ran
⁡
A
∘
B
=
ran
⁡
A