Metamath Proof Explorer


Theorem rncoss

Description: Range of a composition. (Contributed by NM, 19-Mar-1998)

Ref Expression
Assertion rncoss ranABranA

Proof

Step Hyp Ref Expression
1 dmcoss domB-1A-1domA-1
2 df-rn ranAB=domAB-1
3 cnvco AB-1=B-1A-1
4 3 dmeqi domAB-1=domB-1A-1
5 2 4 eqtri ranAB=domB-1A-1
6 df-rn ranA=domA-1
7 1 5 6 3sstr4i ranABranA