Metamath Proof Explorer


Theorem rndrhmcl

Description: The image of a division ring by a ring homomorphism is a division ring. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses rndrhmcl.r R = N 𝑠 ran F
rndrhmcl.1 0 ˙ = 0 N
rndrhmcl.h φ F M RingHom N
rndrhmcl.2 φ ran F 0 ˙
rndrhmcl.m φ M DivRing
Assertion rndrhmcl φ R DivRing

Proof

Step Hyp Ref Expression
1 rndrhmcl.r R = N 𝑠 ran F
2 rndrhmcl.1 0 ˙ = 0 N
3 rndrhmcl.h φ F M RingHom N
4 rndrhmcl.2 φ ran F 0 ˙
5 rndrhmcl.m φ M DivRing
6 imadmrn F dom F = ran F
7 6 oveq2i N 𝑠 F dom F = N 𝑠 ran F
8 1 7 eqtr4i R = N 𝑠 F dom F
9 eqid Base M = Base M
10 eqid Base N = Base N
11 9 10 rhmf F M RingHom N F : Base M Base N
12 3 11 syl φ F : Base M Base N
13 12 fdmd φ dom F = Base M
14 9 sdrgid M DivRing Base M SubDRing M
15 5 14 syl φ Base M SubDRing M
16 13 15 eqeltrd φ dom F SubDRing M
17 8 2 3 16 4 imadrhmcl φ R DivRing