Metamath Proof Explorer


Theorem rnelfm

Description: A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion rnelfm Y A L Fil X F : Y X L ran X FilMap F ran F L

Proof

Step Hyp Ref Expression
1 filtop L Fil X X L
2 1 3ad2ant2 Y A L Fil X F : Y X X L
3 simp1 Y A L Fil X F : Y X Y A
4 simp3 Y A L Fil X F : Y X F : Y X
5 fmf X L Y A F : Y X X FilMap F : fBas Y Fil X
6 2 3 4 5 syl3anc Y A L Fil X F : Y X X FilMap F : fBas Y Fil X
7 6 ffnd Y A L Fil X F : Y X X FilMap F Fn fBas Y
8 fvelrnb X FilMap F Fn fBas Y L ran X FilMap F b fBas Y X FilMap F b = L
9 7 8 syl Y A L Fil X F : Y X L ran X FilMap F b fBas Y X FilMap F b = L
10 ffn F : Y X F Fn Y
11 dffn4 F Fn Y F : Y onto ran F
12 10 11 sylib F : Y X F : Y onto ran F
13 foima F : Y onto ran F F Y = ran F
14 12 13 syl F : Y X F Y = ran F
15 14 ad2antlr X L F : Y X b fBas Y F Y = ran F
16 simpll X L F : Y X b fBas Y X L
17 simpr X L F : Y X b fBas Y b fBas Y
18 simplr X L F : Y X b fBas Y F : Y X
19 fgcl b fBas Y Y filGen b Fil Y
20 filtop Y filGen b Fil Y Y Y filGen b
21 19 20 syl b fBas Y Y Y filGen b
22 21 adantl X L F : Y X b fBas Y Y Y filGen b
23 eqid Y filGen b = Y filGen b
24 23 imaelfm X L b fBas Y F : Y X Y Y filGen b F Y X FilMap F b
25 16 17 18 22 24 syl31anc X L F : Y X b fBas Y F Y X FilMap F b
26 15 25 eqeltrrd X L F : Y X b fBas Y ran F X FilMap F b
27 eleq2 X FilMap F b = L ran F X FilMap F b ran F L
28 26 27 syl5ibcom X L F : Y X b fBas Y X FilMap F b = L ran F L
29 28 ex X L F : Y X b fBas Y X FilMap F b = L ran F L
30 1 29 sylan L Fil X F : Y X b fBas Y X FilMap F b = L ran F L
31 30 3adant1 Y A L Fil X F : Y X b fBas Y X FilMap F b = L ran F L
32 31 rexlimdv Y A L Fil X F : Y X b fBas Y X FilMap F b = L ran F L
33 9 32 sylbid Y A L Fil X F : Y X L ran X FilMap F ran F L
34 simpl2 Y A L Fil X F : Y X ran F L L Fil X
35 filelss L Fil X t L t X
36 35 ex L Fil X t L t X
37 34 36 syl Y A L Fil X F : Y X ran F L t L t X
38 simpr Y A L Fil X F : Y X ran F L t L t L
39 eqidd Y A L Fil X F : Y X ran F L t L F -1 t = F -1 t
40 imaeq2 x = t F -1 x = F -1 t
41 40 rspceeqv t L F -1 t = F -1 t x L F -1 t = F -1 x
42 38 39 41 syl2anc Y A L Fil X F : Y X ran F L t L x L F -1 t = F -1 x
43 simpl1 Y A L Fil X F : Y X ran F L Y A
44 cnvimass F -1 t dom F
45 fdm F : Y X dom F = Y
46 44 45 sseqtrid F : Y X F -1 t Y
47 46 3ad2ant3 Y A L Fil X F : Y X F -1 t Y
48 47 adantr Y A L Fil X F : Y X ran F L F -1 t Y
49 43 48 ssexd Y A L Fil X F : Y X ran F L F -1 t V
50 eqid x L F -1 x = x L F -1 x
51 50 elrnmpt F -1 t V F -1 t ran x L F -1 x x L F -1 t = F -1 x
52 49 51 syl Y A L Fil X F : Y X ran F L F -1 t ran x L F -1 x x L F -1 t = F -1 x
53 52 adantr Y A L Fil X F : Y X ran F L t L F -1 t ran x L F -1 x x L F -1 t = F -1 x
54 42 53 mpbird Y A L Fil X F : Y X ran F L t L F -1 t ran x L F -1 x
55 ssid F -1 t F -1 t
56 ffun F : Y X Fun F
57 56 3ad2ant3 Y A L Fil X F : Y X Fun F
58 57 ad2antrr Y A L Fil X F : Y X ran F L t L Fun F
59 funimass3 Fun F F -1 t dom F F F -1 t t F -1 t F -1 t
60 58 44 59 sylancl Y A L Fil X F : Y X ran F L t L F F -1 t t F -1 t F -1 t
61 55 60 mpbiri Y A L Fil X F : Y X ran F L t L F F -1 t t
62 imaeq2 s = F -1 t F s = F F -1 t
63 62 sseq1d s = F -1 t F s t F F -1 t t
64 63 rspcev F -1 t ran x L F -1 x F F -1 t t s ran x L F -1 x F s t
65 54 61 64 syl2anc Y A L Fil X F : Y X ran F L t L s ran x L F -1 x F s t
66 65 ex Y A L Fil X F : Y X ran F L t L s ran x L F -1 x F s t
67 37 66 jcad Y A L Fil X F : Y X ran F L t L t X s ran x L F -1 x F s t
68 34 adantr Y A L Fil X F : Y X ran F L s ran x L F -1 x F s t t X L Fil X
69 50 elrnmpt s V s ran x L F -1 x x L s = F -1 x
70 69 elv s ran x L F -1 x x L s = F -1 x
71 ssid F -1 x F -1 x
72 57 ad3antrrr Y A L Fil X F : Y X ran F L x L F F -1 x t t X Fun F
73 cnvimass F -1 x dom F
74 funimass3 Fun F F -1 x dom F F F -1 x x F -1 x F -1 x
75 72 73 74 sylancl Y A L Fil X F : Y X ran F L x L F F -1 x t t X F F -1 x x F -1 x F -1 x
76 71 75 mpbiri Y A L Fil X F : Y X ran F L x L F F -1 x t t X F F -1 x x
77 imassrn F F -1 x ran F
78 ssin F F -1 x x F F -1 x ran F F F -1 x x ran F
79 76 77 78 sylanblc Y A L Fil X F : Y X ran F L x L F F -1 x t t X F F -1 x x ran F
80 elin z x ran F z x z ran F
81 fvelrnb F Fn Y z ran F y Y F y = z
82 10 81 syl F : Y X z ran F y Y F y = z
83 82 3ad2ant3 Y A L Fil X F : Y X z ran F y Y F y = z
84 83 ad3antrrr Y A L Fil X F : Y X ran F L x L F F -1 x t t X z ran F y Y F y = z
85 72 ad2antrr Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y F y x Fun F
86 85 73 jctir Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y F y x Fun F F -1 x dom F
87 57 ad2antrr Y A L Fil X F : Y X ran F L x L Fun F
88 87 ad2antrr Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y Fun F
89 45 3ad2ant3 Y A L Fil X F : Y X dom F = Y
90 89 ad3antrrr Y A L Fil X F : Y X ran F L x L F F -1 x t t X dom F = Y
91 90 eleq2d Y A L Fil X F : Y X ran F L x L F F -1 x t t X y dom F y Y
92 91 biimpar Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y y dom F
93 fvimacnv Fun F y dom F F y x y F -1 x
94 88 92 93 syl2anc Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y F y x y F -1 x
95 94 biimpa Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y F y x y F -1 x
96 funfvima2 Fun F F -1 x dom F y F -1 x F y F F -1 x
97 86 95 96 sylc Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y F y x F y F F -1 x
98 97 ex Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y F y x F y F F -1 x
99 eleq1 F y = z F y x z x
100 eleq1 F y = z F y F F -1 x z F F -1 x
101 99 100 imbi12d F y = z F y x F y F F -1 x z x z F F -1 x
102 98 101 syl5ibcom Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y F y = z z x z F F -1 x
103 102 rexlimdva Y A L Fil X F : Y X ran F L x L F F -1 x t t X y Y F y = z z x z F F -1 x
104 84 103 sylbid Y A L Fil X F : Y X ran F L x L F F -1 x t t X z ran F z x z F F -1 x
105 104 impcomd Y A L Fil X F : Y X ran F L x L F F -1 x t t X z x z ran F z F F -1 x
106 80 105 syl5bi Y A L Fil X F : Y X ran F L x L F F -1 x t t X z x ran F z F F -1 x
107 106 ssrdv Y A L Fil X F : Y X ran F L x L F F -1 x t t X x ran F F F -1 x
108 79 107 eqssd Y A L Fil X F : Y X ran F L x L F F -1 x t t X F F -1 x = x ran F
109 filin L Fil X x L ran F L x ran F L
110 109 3exp L Fil X x L ran F L x ran F L
111 110 com23 L Fil X ran F L x L x ran F L
112 111 3ad2ant2 Y A L Fil X F : Y X ran F L x L x ran F L
113 112 imp31 Y A L Fil X F : Y X ran F L x L x ran F L
114 113 adantr Y A L Fil X F : Y X ran F L x L F F -1 x t t X x ran F L
115 108 114 eqeltrd Y A L Fil X F : Y X ran F L x L F F -1 x t t X F F -1 x L
116 115 exp32 Y A L Fil X F : Y X ran F L x L F F -1 x t t X F F -1 x L
117 imaeq2 s = F -1 x F s = F F -1 x
118 117 sseq1d s = F -1 x F s t F F -1 x t
119 117 eleq1d s = F -1 x F s L F F -1 x L
120 119 imbi2d s = F -1 x t X F s L t X F F -1 x L
121 118 120 imbi12d s = F -1 x F s t t X F s L F F -1 x t t X F F -1 x L
122 116 121 syl5ibrcom Y A L Fil X F : Y X ran F L x L s = F -1 x F s t t X F s L
123 122 rexlimdva Y A L Fil X F : Y X ran F L x L s = F -1 x F s t t X F s L
124 70 123 syl5bi Y A L Fil X F : Y X ran F L s ran x L F -1 x F s t t X F s L
125 124 imp44 Y A L Fil X F : Y X ran F L s ran x L F -1 x F s t t X F s L
126 simprr Y A L Fil X F : Y X ran F L s ran x L F -1 x F s t t X t X
127 simprlr Y A L Fil X F : Y X ran F L s ran x L F -1 x F s t t X F s t
128 filss L Fil X F s L t X F s t t L
129 68 125 126 127 128 syl13anc Y A L Fil X F : Y X ran F L s ran x L F -1 x F s t t X t L
130 129 exp44 Y A L Fil X F : Y X ran F L s ran x L F -1 x F s t t X t L
131 130 rexlimdv Y A L Fil X F : Y X ran F L s ran x L F -1 x F s t t X t L
132 131 impcomd Y A L Fil X F : Y X ran F L t X s ran x L F -1 x F s t t L
133 67 132 impbid Y A L Fil X F : Y X ran F L t L t X s ran x L F -1 x F s t
134 2 adantr Y A L Fil X F : Y X ran F L X L
135 rnelfmlem Y A L Fil X F : Y X ran F L ran x L F -1 x fBas Y
136 simpl3 Y A L Fil X F : Y X ran F L F : Y X
137 elfm X L ran x L F -1 x fBas Y F : Y X t X FilMap F ran x L F -1 x t X s ran x L F -1 x F s t
138 134 135 136 137 syl3anc Y A L Fil X F : Y X ran F L t X FilMap F ran x L F -1 x t X s ran x L F -1 x F s t
139 133 138 bitr4d Y A L Fil X F : Y X ran F L t L t X FilMap F ran x L F -1 x
140 139 eqrdv Y A L Fil X F : Y X ran F L L = X FilMap F ran x L F -1 x
141 7 adantr Y A L Fil X F : Y X ran F L X FilMap F Fn fBas Y
142 fnfvelrn X FilMap F Fn fBas Y ran x L F -1 x fBas Y X FilMap F ran x L F -1 x ran X FilMap F
143 141 135 142 syl2anc Y A L Fil X F : Y X ran F L X FilMap F ran x L F -1 x ran X FilMap F
144 140 143 eqeltrd Y A L Fil X F : Y X ran F L L ran X FilMap F
145 144 ex Y A L Fil X F : Y X ran F L L ran X FilMap F
146 33 145 impbid Y A L Fil X F : Y X L ran X FilMap F ran F L