Metamath Proof Explorer


Theorem rnelfmlem

Description: Lemma for rnelfm . (Contributed by Jeff Hankins, 14-Nov-2009)

Ref Expression
Assertion rnelfmlem Y A L Fil X F : Y X ran F L ran x L F -1 x fBas Y

Proof

Step Hyp Ref Expression
1 simpl1 Y A L Fil X F : Y X ran F L Y A
2 cnvimass F -1 x dom F
3 simpl3 Y A L Fil X F : Y X ran F L F : Y X
4 2 3 fssdm Y A L Fil X F : Y X ran F L F -1 x Y
5 1 4 sselpwd Y A L Fil X F : Y X ran F L F -1 x 𝒫 Y
6 5 adantr Y A L Fil X F : Y X ran F L x L F -1 x 𝒫 Y
7 6 fmpttd Y A L Fil X F : Y X ran F L x L F -1 x : L 𝒫 Y
8 7 frnd Y A L Fil X F : Y X ran F L ran x L F -1 x 𝒫 Y
9 filtop L Fil X X L
10 9 3ad2ant2 Y A L Fil X F : Y X X L
11 10 adantr Y A L Fil X F : Y X ran F L X L
12 fimacnv F : Y X F -1 X = Y
13 12 eqcomd F : Y X Y = F -1 X
14 13 3ad2ant3 Y A L Fil X F : Y X Y = F -1 X
15 14 adantr Y A L Fil X F : Y X ran F L Y = F -1 X
16 imaeq2 x = X F -1 x = F -1 X
17 16 rspceeqv X L Y = F -1 X x L Y = F -1 x
18 11 15 17 syl2anc Y A L Fil X F : Y X ran F L x L Y = F -1 x
19 eqid x L F -1 x = x L F -1 x
20 19 elrnmpt Y A Y ran x L F -1 x x L Y = F -1 x
21 20 3ad2ant1 Y A L Fil X F : Y X Y ran x L F -1 x x L Y = F -1 x
22 21 adantr Y A L Fil X F : Y X ran F L Y ran x L F -1 x x L Y = F -1 x
23 18 22 mpbird Y A L Fil X F : Y X ran F L Y ran x L F -1 x
24 23 ne0d Y A L Fil X F : Y X ran F L ran x L F -1 x
25 0nelfil L Fil X ¬ L
26 25 3ad2ant2 Y A L Fil X F : Y X ¬ L
27 26 adantr Y A L Fil X F : Y X ran F L ¬ L
28 0ex V
29 19 elrnmpt V ran x L F -1 x x L = F -1 x
30 28 29 ax-mp ran x L F -1 x x L = F -1 x
31 ffn F : Y X F Fn Y
32 fvelrnb F Fn Y y ran F z Y F z = y
33 31 32 syl F : Y X y ran F z Y F z = y
34 33 3ad2ant3 Y A L Fil X F : Y X y ran F z Y F z = y
35 34 ad2antrr Y A L Fil X F : Y X ran F L x L y x y ran F z Y F z = y
36 eleq1 F z = y F z x y x
37 36 biimparc y x F z = y F z x
38 37 ad2ant2l x L y x z Y F z = y F z x
39 38 adantll Y A L Fil X F : Y X ran F L x L y x z Y F z = y F z x
40 ffun F : Y X Fun F
41 40 3ad2ant3 Y A L Fil X F : Y X Fun F
42 41 ad3antrrr Y A L Fil X F : Y X ran F L x L y x z Y F z = y Fun F
43 fdm F : Y X dom F = Y
44 43 eleq2d F : Y X z dom F z Y
45 44 biimpar F : Y X z Y z dom F
46 45 3ad2antl3 Y A L Fil X F : Y X z Y z dom F
47 46 adantlr Y A L Fil X F : Y X ran F L z Y z dom F
48 47 ad2ant2r Y A L Fil X F : Y X ran F L x L y x z Y F z = y z dom F
49 fvimacnv Fun F z dom F F z x z F -1 x
50 42 48 49 syl2anc Y A L Fil X F : Y X ran F L x L y x z Y F z = y F z x z F -1 x
51 39 50 mpbid Y A L Fil X F : Y X ran F L x L y x z Y F z = y z F -1 x
52 n0i z F -1 x ¬ F -1 x =
53 eqcom F -1 x = = F -1 x
54 52 53 sylnib z F -1 x ¬ = F -1 x
55 51 54 syl Y A L Fil X F : Y X ran F L x L y x z Y F z = y ¬ = F -1 x
56 55 rexlimdvaa Y A L Fil X F : Y X ran F L x L y x z Y F z = y ¬ = F -1 x
57 35 56 sylbid Y A L Fil X F : Y X ran F L x L y x y ran F ¬ = F -1 x
58 57 con2d Y A L Fil X F : Y X ran F L x L y x = F -1 x ¬ y ran F
59 58 expr Y A L Fil X F : Y X ran F L x L y x = F -1 x ¬ y ran F
60 59 com23 Y A L Fil X F : Y X ran F L x L = F -1 x y x ¬ y ran F
61 60 impr Y A L Fil X F : Y X ran F L x L = F -1 x y x ¬ y ran F
62 61 alrimiv Y A L Fil X F : Y X ran F L x L = F -1 x y y x ¬ y ran F
63 imnan y x ¬ y ran F ¬ y x y ran F
64 elin y x ran F y x y ran F
65 63 64 xchbinxr y x ¬ y ran F ¬ y x ran F
66 65 albii y y x ¬ y ran F y ¬ y x ran F
67 eq0 x ran F = y ¬ y x ran F
68 eqcom x ran F = = x ran F
69 66 67 68 3bitr2i y y x ¬ y ran F = x ran F
70 62 69 sylib Y A L Fil X F : Y X ran F L x L = F -1 x = x ran F
71 simpll2 Y A L Fil X F : Y X ran F L x L = F -1 x L Fil X
72 simprl Y A L Fil X F : Y X ran F L x L = F -1 x x L
73 simplr Y A L Fil X F : Y X ran F L x L = F -1 x ran F L
74 filin L Fil X x L ran F L x ran F L
75 71 72 73 74 syl3anc Y A L Fil X F : Y X ran F L x L = F -1 x x ran F L
76 70 75 eqeltrd Y A L Fil X F : Y X ran F L x L = F -1 x L
77 76 rexlimdvaa Y A L Fil X F : Y X ran F L x L = F -1 x L
78 30 77 syl5bi Y A L Fil X F : Y X ran F L ran x L F -1 x L
79 27 78 mtod Y A L Fil X F : Y X ran F L ¬ ran x L F -1 x
80 df-nel ran x L F -1 x ¬ ran x L F -1 x
81 79 80 sylibr Y A L Fil X F : Y X ran F L ran x L F -1 x
82 19 elrnmpt r V r ran x L F -1 x x L r = F -1 x
83 82 elv r ran x L F -1 x x L r = F -1 x
84 imaeq2 x = u F -1 x = F -1 u
85 84 eqeq2d x = u r = F -1 x r = F -1 u
86 85 cbvrexvw x L r = F -1 x u L r = F -1 u
87 83 86 bitri r ran x L F -1 x u L r = F -1 u
88 19 elrnmpt s V s ran x L F -1 x x L s = F -1 x
89 88 elv s ran x L F -1 x x L s = F -1 x
90 imaeq2 x = v F -1 x = F -1 v
91 90 eqeq2d x = v s = F -1 x s = F -1 v
92 91 cbvrexvw x L s = F -1 x v L s = F -1 v
93 89 92 bitri s ran x L F -1 x v L s = F -1 v
94 87 93 anbi12i r ran x L F -1 x s ran x L F -1 x u L r = F -1 u v L s = F -1 v
95 reeanv u L v L r = F -1 u s = F -1 v u L r = F -1 u v L s = F -1 v
96 94 95 bitr4i r ran x L F -1 x s ran x L F -1 x u L v L r = F -1 u s = F -1 v
97 filin L Fil X u L v L u v L
98 97 3expb L Fil X u L v L u v L
99 98 adantlr L Fil X F : Y X u L v L u v L
100 eqidd L Fil X F : Y X u L v L F -1 u v = F -1 u v
101 imaeq2 x = u v F -1 x = F -1 u v
102 101 rspceeqv u v L F -1 u v = F -1 u v x L F -1 u v = F -1 x
103 99 100 102 syl2anc L Fil X F : Y X u L v L x L F -1 u v = F -1 x
104 103 3adantl1 Y A L Fil X F : Y X u L v L x L F -1 u v = F -1 x
105 104 ad2ant2r Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v x L F -1 u v = F -1 x
106 simpll1 Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v Y A
107 cnvimass F -1 u v dom F
108 107 43 sseqtrid F : Y X F -1 u v Y
109 108 3ad2ant3 Y A L Fil X F : Y X F -1 u v Y
110 109 ad2antrr Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v F -1 u v Y
111 106 110 ssexd Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v F -1 u v V
112 19 elrnmpt F -1 u v V F -1 u v ran x L F -1 x x L F -1 u v = F -1 x
113 111 112 syl Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v F -1 u v ran x L F -1 x x L F -1 u v = F -1 x
114 105 113 mpbird Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v F -1 u v ran x L F -1 x
115 simprrl Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v r = F -1 u
116 simprrr Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v s = F -1 v
117 115 116 ineq12d Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v r s = F -1 u F -1 v
118 funcnvcnv Fun F Fun F -1 -1
119 imain Fun F -1 -1 F -1 u v = F -1 u F -1 v
120 40 118 119 3syl F : Y X F -1 u v = F -1 u F -1 v
121 120 3ad2ant3 Y A L Fil X F : Y X F -1 u v = F -1 u F -1 v
122 121 ad2antrr Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v F -1 u v = F -1 u F -1 v
123 117 122 eqtr4d Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v r s = F -1 u v
124 eqimss2 r s = F -1 u v F -1 u v r s
125 123 124 syl Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v F -1 u v r s
126 sseq1 t = F -1 u v t r s F -1 u v r s
127 126 rspcev F -1 u v ran x L F -1 x F -1 u v r s t ran x L F -1 x t r s
128 114 125 127 syl2anc Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v t ran x L F -1 x t r s
129 128 exp32 Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v t ran x L F -1 x t r s
130 129 rexlimdvv Y A L Fil X F : Y X ran F L u L v L r = F -1 u s = F -1 v t ran x L F -1 x t r s
131 96 130 syl5bi Y A L Fil X F : Y X ran F L r ran x L F -1 x s ran x L F -1 x t ran x L F -1 x t r s
132 131 ralrimivv Y A L Fil X F : Y X ran F L r ran x L F -1 x s ran x L F -1 x t ran x L F -1 x t r s
133 24 81 132 3jca Y A L Fil X F : Y X ran F L ran x L F -1 x ran x L F -1 x r ran x L F -1 x s ran x L F -1 x t ran x L F -1 x t r s
134 isfbas2 Y A ran x L F -1 x fBas Y ran x L F -1 x 𝒫 Y ran x L F -1 x ran x L F -1 x r ran x L F -1 x s ran x L F -1 x t ran x L F -1 x t r s
135 1 134 syl Y A L Fil X F : Y X ran F L ran x L F -1 x fBas Y ran x L F -1 x 𝒫 Y ran x L F -1 x ran x L F -1 x r ran x L F -1 x s ran x L F -1 x t ran x L F -1 x t r s
136 8 133 135 mpbir2and Y A L Fil X F : Y X ran F L ran x L F -1 x fBas Y