Metamath Proof Explorer


Theorem rnep

Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023)

Ref Expression
Assertion rnep ran E = V

Proof

Step Hyp Ref Expression
1 dfrn2 ran E = x | y y E x
2 nfab1 _ x x | y y E x
3 nfcv _ x V
4 abid x x | y y E x y y E x
5 epel y E x y x
6 5 exbii y y E x y y x
7 neq0 ¬ x = y y x
8 7 bicomi y y x ¬ x =
9 velsn x x =
10 9 bicomi x = x
11 10 notbii ¬ x = ¬ x
12 6 8 11 3bitri y y E x ¬ x
13 velcomp x V ¬ x
14 13 bicomi ¬ x x V
15 4 12 14 3bitri x x | y y E x x V
16 2 3 15 eqri x | y y E x = V
17 1 16 eqtri ran E = V