Metamath Proof Explorer


Theorem rnfi

Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion rnfi A Fin ran A Fin

Proof

Step Hyp Ref Expression
1 df-rn ran A = dom A -1
2 cnvfi A Fin A -1 Fin
3 dmfi A -1 Fin dom A -1 Fin
4 2 3 syl A Fin dom A -1 Fin
5 1 4 eqeltrid A Fin ran A Fin