Metamath Proof Explorer


Theorem rngabl

Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)

Ref Expression
Assertion rngabl R Rng R Abel

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid mulGrp R = mulGrp R
3 eqid + R = + R
4 eqid R = R
5 1 2 3 4 isrng R Rng R Abel mulGrp R Smgrp x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
6 5 simp1bi R Rng R Abel