Metamath Proof Explorer


Theorem rngacl

Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025)

Ref Expression
Hypotheses rngacl.b B = Base R
rngacl.p + ˙ = + R
Assertion rngacl R Rng X B Y B X + ˙ Y B

Proof

Step Hyp Ref Expression
1 rngacl.b B = Base R
2 rngacl.p + ˙ = + R
3 rnggrp R Rng R Grp
4 1 2 grpcl R Grp X B Y B X + ˙ Y B
5 3 4 syl3an1 R Rng X B Y B X + ˙ Y B