Metamath Proof Explorer


Theorem rngass

Description: Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011) (Revised by AV, 13-Feb-2025)

Ref Expression
Hypotheses rngass.b B = Base R
rngass.t · ˙ = R
Assertion rngass R Rng X B Y B Z B X · ˙ Y · ˙ Z = X · ˙ Y · ˙ Z

Proof

Step Hyp Ref Expression
1 rngass.b B = Base R
2 rngass.t · ˙ = R
3 eqid mulGrp R = mulGrp R
4 3 rngmgp Could not format ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
5 3 1 mgpbas B = Base mulGrp R
6 3 2 mgpplusg · ˙ = + mulGrp R
7 5 6 sgrpass Could not format ( ( ( mulGrp ` R ) e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) : No typesetting found for |- ( ( ( mulGrp ` R ) e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) with typecode |-
8 4 7 sylan R Rng X B Y B Z B X · ˙ Y · ˙ Z = X · ˙ Y · ˙ Z