Metamath Proof Explorer


Theorem rngcinv

Description: An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020)

Ref Expression
Hypotheses rngcsect.c C = RngCat U
rngcsect.b B = Base C
rngcsect.u φ U V
rngcsect.x φ X B
rngcsect.y φ Y B
rngcinv.n N = Inv C
Assertion rngcinv φ F X N Y G F X RngIso Y G = F -1

Proof

Step Hyp Ref Expression
1 rngcsect.c C = RngCat U
2 rngcsect.b B = Base C
3 rngcsect.u φ U V
4 rngcsect.x φ X B
5 rngcsect.y φ Y B
6 rngcinv.n N = Inv C
7 1 rngccat U V C Cat
8 3 7 syl φ C Cat
9 eqid Sect C = Sect C
10 2 6 8 4 5 9 isinv φ F X N Y G F X Sect C Y G G Y Sect C X F
11 eqid Base X = Base X
12 1 2 3 4 5 11 9 rngcsect φ F X Sect C Y G F X RngHom Y G Y RngHom X G F = I Base X
13 df-3an F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X G F = I Base X
14 12 13 bitrdi φ F X Sect C Y G F X RngHom Y G Y RngHom X G F = I Base X
15 eqid Base Y = Base Y
16 1 2 3 5 4 15 9 rngcsect φ G Y Sect C X F G Y RngHom X F X RngHom Y F G = I Base Y
17 3ancoma G Y RngHom X F X RngHom Y F G = I Base Y F X RngHom Y G Y RngHom X F G = I Base Y
18 df-3an F X RngHom Y G Y RngHom X F G = I Base Y F X RngHom Y G Y RngHom X F G = I Base Y
19 17 18 bitri G Y RngHom X F X RngHom Y F G = I Base Y F X RngHom Y G Y RngHom X F G = I Base Y
20 16 19 bitrdi φ G Y Sect C X F F X RngHom Y G Y RngHom X F G = I Base Y
21 14 20 anbi12d φ F X Sect C Y G G Y Sect C X F F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F G = I Base Y
22 anandi F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F G = I Base Y F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y
23 21 22 bitrdi φ F X Sect C Y G G Y Sect C X F F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y
24 simplrl F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F X RngHom Y
25 24 adantl φ F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F X RngHom Y
26 11 15 rnghmf F X RngHom Y F : Base X Base Y
27 15 11 rnghmf G Y RngHom X G : Base Y Base X
28 26 27 anim12i F X RngHom Y G Y RngHom X F : Base X Base Y G : Base Y Base X
29 28 ad2antlr F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F : Base X Base Y G : Base Y Base X
30 simpr F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F G = I Base Y
31 30 adantl F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F G = I Base Y
32 simpr F X RngHom Y G Y RngHom X G F = I Base X G F = I Base X
33 32 ad2antrl F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y G F = I Base X
34 29 31 33 jca32 F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F : Base X Base Y G : Base Y Base X F G = I Base Y G F = I Base X
35 34 adantl φ F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F : Base X Base Y G : Base Y Base X F G = I Base Y G F = I Base X
36 fcof1o F : Base X Base Y G : Base Y Base X F G = I Base Y G F = I Base X F : Base X 1-1 onto Base Y F -1 = G
37 eqcom F -1 = G G = F -1
38 37 anbi2i F : Base X 1-1 onto Base Y F -1 = G F : Base X 1-1 onto Base Y G = F -1
39 36 38 sylib F : Base X Base Y G : Base Y Base X F G = I Base Y G F = I Base X F : Base X 1-1 onto Base Y G = F -1
40 35 39 syl φ F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F : Base X 1-1 onto Base Y G = F -1
41 anass F X RngHom Y F : Base X 1-1 onto Base Y G = F -1 F X RngHom Y F : Base X 1-1 onto Base Y G = F -1
42 25 40 41 sylanbrc φ F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F X RngHom Y F : Base X 1-1 onto Base Y G = F -1
43 11 15 isrngim2 X B Y B F X RngIso Y F X RngHom Y F : Base X 1-1 onto Base Y
44 4 5 43 syl2anc φ F X RngIso Y F X RngHom Y F : Base X 1-1 onto Base Y
45 44 anbi1d φ F X RngIso Y G = F -1 F X RngHom Y F : Base X 1-1 onto Base Y G = F -1
46 45 adantr φ F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F X RngIso Y G = F -1 F X RngHom Y F : Base X 1-1 onto Base Y G = F -1
47 42 46 mpbird φ F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F X RngIso Y G = F -1
48 11 15 rngimrnghm F X RngIso Y F X RngHom Y
49 48 ad2antrl φ F X RngIso Y G = F -1 F X RngHom Y
50 isrngim X B Y B F X RngIso Y F X RngHom Y F -1 Y RngHom X
51 4 5 50 syl2anc φ F X RngIso Y F X RngHom Y F -1 Y RngHom X
52 eleq1 F -1 = G F -1 Y RngHom X G Y RngHom X
53 52 eqcoms G = F -1 F -1 Y RngHom X G Y RngHom X
54 53 anbi2d G = F -1 F X RngHom Y F -1 Y RngHom X F X RngHom Y G Y RngHom X
55 51 54 sylan9bbr G = F -1 φ F X RngIso Y F X RngHom Y G Y RngHom X
56 simpr F X RngHom Y G Y RngHom X G Y RngHom X
57 55 56 syl6bi G = F -1 φ F X RngIso Y G Y RngHom X
58 57 com12 F X RngIso Y G = F -1 φ G Y RngHom X
59 58 expdimp F X RngIso Y G = F -1 φ G Y RngHom X
60 59 impcom φ F X RngIso Y G = F -1 G Y RngHom X
61 coeq1 G = F -1 G F = F -1 F
62 61 ad2antll φ F X RngIso Y G = F -1 G F = F -1 F
63 11 15 rngimf1o F X RngIso Y F : Base X 1-1 onto Base Y
64 63 ad2antrl φ F X RngIso Y G = F -1 F : Base X 1-1 onto Base Y
65 f1ococnv1 F : Base X 1-1 onto Base Y F -1 F = I Base X
66 64 65 syl φ F X RngIso Y G = F -1 F -1 F = I Base X
67 62 66 eqtrd φ F X RngIso Y G = F -1 G F = I Base X
68 49 60 67 jca31 φ F X RngIso Y G = F -1 F X RngHom Y G Y RngHom X G F = I Base X
69 51 biimpcd F X RngIso Y φ F X RngHom Y F -1 Y RngHom X
70 69 adantr F X RngIso Y G = F -1 φ F X RngHom Y F -1 Y RngHom X
71 70 impcom φ F X RngIso Y G = F -1 F X RngHom Y F -1 Y RngHom X
72 eleq1 G = F -1 G Y RngHom X F -1 Y RngHom X
73 72 ad2antll φ F X RngIso Y G = F -1 G Y RngHom X F -1 Y RngHom X
74 73 anbi2d φ F X RngIso Y G = F -1 F X RngHom Y G Y RngHom X F X RngHom Y F -1 Y RngHom X
75 71 74 mpbird φ F X RngIso Y G = F -1 F X RngHom Y G Y RngHom X
76 coeq2 G = F -1 F G = F F -1
77 76 ad2antll φ F X RngIso Y G = F -1 F G = F F -1
78 f1ococnv2 F : Base X 1-1 onto Base Y F F -1 = I Base Y
79 64 78 syl φ F X RngIso Y G = F -1 F F -1 = I Base Y
80 77 79 eqtrd φ F X RngIso Y G = F -1 F G = I Base Y
81 75 67 80 jca31 φ F X RngIso Y G = F -1 F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y
82 68 75 81 jca31 φ F X RngIso Y G = F -1 F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y
83 47 82 impbida φ F X RngHom Y G Y RngHom X G F = I Base X F X RngHom Y G Y RngHom X F X RngHom Y G Y RngHom X G F = I Base X F G = I Base Y F X RngIso Y G = F -1
84 10 23 83 3bitrd φ F X N Y G F X RngIso Y G = F -1