Metamath Proof Explorer


Theorem rnghmmul

Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses rnghmmul.x X=BaseR
rnghmmul.m ·˙=R
rnghmmul.n ×˙=S
Assertion rnghmmul FRRngHomSAXBXFA·˙B=FA×˙FB

Proof

Step Hyp Ref Expression
1 rnghmmul.x X=BaseR
2 rnghmmul.m ·˙=R
3 rnghmmul.n ×˙=S
4 1 2 3 isrnghm FRRngHomSRRngSRngFRGrpHomSxXyXFx·˙y=Fx×˙Fy
5 fvoveq1 x=AFx·˙y=FA·˙y
6 fveq2 x=AFx=FA
7 6 oveq1d x=AFx×˙Fy=FA×˙Fy
8 5 7 eqeq12d x=AFx·˙y=Fx×˙FyFA·˙y=FA×˙Fy
9 oveq2 y=BA·˙y=A·˙B
10 9 fveq2d y=BFA·˙y=FA·˙B
11 fveq2 y=BFy=FB
12 11 oveq2d y=BFA×˙Fy=FA×˙FB
13 10 12 eqeq12d y=BFA·˙y=FA×˙FyFA·˙B=FA×˙FB
14 8 13 rspc2va AXBXxXyXFx·˙y=Fx×˙FyFA·˙B=FA×˙FB
15 14 expcom xXyXFx·˙y=Fx×˙FyAXBXFA·˙B=FA×˙FB
16 15 ad2antll RRngSRngFRGrpHomSxXyXFx·˙y=Fx×˙FyAXBXFA·˙B=FA×˙FB
17 4 16 sylbi FRRngHomSAXBXFA·˙B=FA×˙FB
18 17 3impib FRRngHomSAXBXFA·˙B=FA×˙FB