Metamath Proof Explorer


Theorem rnghmresel

Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypothesis rnghmresel.h φ H = RngHom B × B
Assertion rnghmresel φ X B Y B F X H Y F X RngHom Y

Proof

Step Hyp Ref Expression
1 rnghmresel.h φ H = RngHom B × B
2 1 adantr φ X B Y B H = RngHom B × B
3 2 oveqd φ X B Y B X H Y = X RngHom B × B Y
4 ovres X B Y B X RngHom B × B Y = X RngHom Y
5 4 adantl φ X B Y B X RngHom B × B Y = X RngHom Y
6 3 5 eqtrd φ X B Y B X H Y = X RngHom Y
7 6 eleq2d φ X B Y B F X H Y F X RngHom Y
8 7 biimp3a φ X B Y B F X H Y F X RngHom Y