| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghmsubcsetc.c |
|
| 2 |
|
rnghmsubcsetc.u |
|
| 3 |
|
rnghmsubcsetc.b |
|
| 4 |
|
rnghmsubcsetc.h |
|
| 5 |
3
|
eleq2d |
|
| 6 |
|
elin |
|
| 7 |
6
|
simplbi |
|
| 8 |
5 7
|
biimtrdi |
|
| 9 |
8
|
imp |
|
| 10 |
|
eqid |
|
| 11 |
10
|
idrnghm |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
2
|
adantr |
|
| 15 |
6
|
simprbi |
|
| 16 |
5 15
|
biimtrdi |
|
| 17 |
16
|
imp |
|
| 18 |
1 13 14 17
|
estrcid |
|
| 19 |
4
|
oveqdr |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
20 21 2 22
|
rngchomfval |
|
| 24 |
20 21 2
|
rngcbas |
|
| 25 |
|
incom |
|
| 26 |
3 25
|
eqtrdi |
|
| 27 |
26
|
eqcomd |
|
| 28 |
24 27
|
eqtrd |
|
| 29 |
28
|
sqxpeqd |
|
| 30 |
29
|
reseq2d |
|
| 31 |
23 30
|
eqtrd |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
eqcomd |
|
| 34 |
33
|
oveqd |
|
| 35 |
26
|
eleq2d |
|
| 36 |
35
|
biimpa |
|
| 37 |
24
|
adantr |
|
| 38 |
36 37
|
eleqtrrd |
|
| 39 |
20 21 14 22 38 38
|
rngchom |
|
| 40 |
19 34 39
|
3eqtrd |
|
| 41 |
12 18 40
|
3eltr4d |
|