| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghmsubcsetc.c |
|
| 2 |
|
rnghmsubcsetc.u |
|
| 3 |
|
rnghmsubcsetc.b |
|
| 4 |
|
rnghmsubcsetc.h |
|
| 5 |
|
simpl |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpr |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpr |
|
| 11 |
10
|
adantl |
|
| 12 |
4
|
rnghmresel |
|
| 13 |
7 9 11 12
|
syl3anc |
|
| 14 |
|
simpr |
|
| 15 |
|
simpl |
|
| 16 |
14 15
|
anim12i |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simprl |
|
| 19 |
4
|
rnghmresel |
|
| 20 |
7 17 18 19
|
syl3anc |
|
| 21 |
|
rnghmco |
|
| 22 |
13 20 21
|
syl2anc |
|
| 23 |
2
|
ad3antrrr |
|
| 24 |
|
eqid |
|
| 25 |
3
|
eleq2d |
|
| 26 |
|
elinel2 |
|
| 27 |
25 26
|
biimtrdi |
|
| 28 |
27
|
imp |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
adantr |
|
| 31 |
3
|
eleq2d |
|
| 32 |
|
elinel2 |
|
| 33 |
31 32
|
biimtrdi |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
com12 |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
impcom |
|
| 38 |
37
|
adantr |
|
| 39 |
3
|
eleq2d |
|
| 40 |
|
elinel2 |
|
| 41 |
39 40
|
biimtrdi |
|
| 42 |
41
|
adantr |
|
| 43 |
42
|
adantld |
|
| 44 |
43
|
imp |
|
| 45 |
44
|
adantr |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
simprl |
|
| 50 |
49
|
adantr |
|
| 51 |
14
|
anim1i |
|
| 52 |
51
|
ancoms |
|
| 53 |
52
|
adantr |
|
| 54 |
|
simpr |
|
| 55 |
50 53 54 19
|
syl3anc |
|
| 56 |
46 47
|
rnghmf |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
ex |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
impcom |
|
| 62 |
61
|
com12 |
|
| 63 |
62
|
adantr |
|
| 64 |
63
|
impcom |
|
| 65 |
12
|
3expa |
|
| 66 |
47 48
|
rnghmf |
|
| 67 |
65 66
|
syl |
|
| 68 |
67
|
ex |
|
| 69 |
68
|
adantlr |
|
| 70 |
69
|
adantld |
|
| 71 |
70
|
imp |
|
| 72 |
1 23 24 30 38 45 46 47 48 64 71
|
estrcco |
|
| 73 |
4
|
adantr |
|
| 74 |
73
|
oveqdr |
|
| 75 |
|
ovres |
|
| 76 |
75
|
ad2ant2l |
|
| 77 |
74 76
|
eqtrd |
|
| 78 |
77
|
adantr |
|
| 79 |
22 72 78
|
3eltr4d |
|
| 80 |
79
|
ralrimivva |
|
| 81 |
80
|
ralrimivva |
|