Metamath Proof Explorer


Theorem rngimcnv

Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025)

Ref Expression
Assertion rngimcnv F S RngIso T F -1 T RngIso S

Proof

Step Hyp Ref Expression
1 rngimrcl F S RngIso T S V T V
2 isrngim S V T V F S RngIso T F S RngHom T F -1 T RngHom S
3 eqid Base S = Base S
4 eqid Base T = Base T
5 3 4 rnghmf F S RngHom T F : Base S Base T
6 frel F : Base S Base T Rel F
7 dfrel2 Rel F F -1 -1 = F
8 6 7 sylib F : Base S Base T F -1 -1 = F
9 5 8 syl F S RngHom T F -1 -1 = F
10 id F S RngHom T F S RngHom T
11 9 10 eqeltrd F S RngHom T F -1 -1 S RngHom T
12 11 anim1ci F S RngHom T F -1 T RngHom S F -1 T RngHom S F -1 -1 S RngHom T
13 isrngim T V S V F -1 T RngIso S F -1 T RngHom S F -1 -1 S RngHom T
14 13 ancoms S V T V F -1 T RngIso S F -1 T RngHom S F -1 -1 S RngHom T
15 12 14 imbitrrid S V T V F S RngHom T F -1 T RngHom S F -1 T RngIso S
16 2 15 sylbid S V T V F S RngIso T F -1 T RngIso S
17 1 16 mpcom F S RngIso T F -1 T RngIso S