Metamath Proof Explorer


Theorem rngimrnghm

Description: An isomorphism of non-unital rings is a homomorphism. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses rnghmf1o.b B = Base R
rnghmf1o.c C = Base S
Assertion rngimrnghm F R RngIso S F R RngHom S

Proof

Step Hyp Ref Expression
1 rnghmf1o.b B = Base R
2 rnghmf1o.c C = Base S
3 rngimrcl F R RngIso S R V S V
4 1 2 isrngim2 R V S V F R RngIso S F R RngHom S F : B 1-1 onto C
5 simpl F R RngHom S F : B 1-1 onto C F R RngHom S
6 4 5 syl6bi R V S V F R RngIso S F R RngHom S
7 3 6 mpcom F R RngIso S F R RngHom S