Metamath Proof Explorer


Theorem rngisom1

Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025)

Ref Expression
Hypotheses rngisom1.1 1 ˙ = 1 R
rngisom1.b B = Base S
rngisom1.t · ˙ = S
Assertion rngisom1 R Ring S Rng F R RngIso S x B F 1 ˙ · ˙ x = x x · ˙ F 1 ˙ = x

Proof

Step Hyp Ref Expression
1 rngisom1.1 1 ˙ = 1 R
2 rngisom1.b B = Base S
3 rngisom1.t · ˙ = S
4 rngimcnv F R RngIso S F -1 S RngIso R
5 eqid Base R = Base R
6 2 5 rngimrnghm F -1 S RngIso R F -1 S RngHom R
7 4 6 syl F R RngIso S F -1 S RngHom R
8 7 3ad2ant3 R Ring S Rng F R RngIso S F -1 S RngHom R
9 8 adantr R Ring S Rng F R RngIso S x B F -1 S RngHom R
10 1 2 rngisomfv1 R Ring F R RngIso S F 1 ˙ B
11 10 3adant2 R Ring S Rng F R RngIso S F 1 ˙ B
12 11 adantr R Ring S Rng F R RngIso S x B F 1 ˙ B
13 simpr R Ring S Rng F R RngIso S x B x B
14 eqid R = R
15 2 3 14 rnghmmul F -1 S RngHom R F 1 ˙ B x B F -1 F 1 ˙ · ˙ x = F -1 F 1 ˙ R F -1 x
16 9 12 13 15 syl3anc R Ring S Rng F R RngIso S x B F -1 F 1 ˙ · ˙ x = F -1 F 1 ˙ R F -1 x
17 16 fveq2d R Ring S Rng F R RngIso S x B F F -1 F 1 ˙ · ˙ x = F F -1 F 1 ˙ R F -1 x
18 5 2 rngimf1o F R RngIso S F : Base R 1-1 onto B
19 18 3ad2ant3 R Ring S Rng F R RngIso S F : Base R 1-1 onto B
20 simpl2 R Ring S Rng F R RngIso S x B S Rng
21 2 3 rngcl S Rng F 1 ˙ B x B F 1 ˙ · ˙ x B
22 20 12 13 21 syl3anc R Ring S Rng F R RngIso S x B F 1 ˙ · ˙ x B
23 f1ocnvfv2 F : Base R 1-1 onto B F 1 ˙ · ˙ x B F F -1 F 1 ˙ · ˙ x = F 1 ˙ · ˙ x
24 19 22 23 syl2an2r R Ring S Rng F R RngIso S x B F F -1 F 1 ˙ · ˙ x = F 1 ˙ · ˙ x
25 5 1 ringidcl R Ring 1 ˙ Base R
26 25 3ad2ant1 R Ring S Rng F R RngIso S 1 ˙ Base R
27 19 26 jca R Ring S Rng F R RngIso S F : Base R 1-1 onto B 1 ˙ Base R
28 27 adantr R Ring S Rng F R RngIso S x B F : Base R 1-1 onto B 1 ˙ Base R
29 f1ocnvfv1 F : Base R 1-1 onto B 1 ˙ Base R F -1 F 1 ˙ = 1 ˙
30 28 29 syl R Ring S Rng F R RngIso S x B F -1 F 1 ˙ = 1 ˙
31 30 oveq1d R Ring S Rng F R RngIso S x B F -1 F 1 ˙ R F -1 x = 1 ˙ R F -1 x
32 simpl1 R Ring S Rng F R RngIso S x B R Ring
33 2 5 rngimf1o F -1 S RngIso R F -1 : B 1-1 onto Base R
34 f1of F -1 : B 1-1 onto Base R F -1 : B Base R
35 33 34 syl F -1 S RngIso R F -1 : B Base R
36 4 35 syl F R RngIso S F -1 : B Base R
37 36 3ad2ant3 R Ring S Rng F R RngIso S F -1 : B Base R
38 37 ffvelcdmda R Ring S Rng F R RngIso S x B F -1 x Base R
39 5 14 1 32 38 ringlidmd R Ring S Rng F R RngIso S x B 1 ˙ R F -1 x = F -1 x
40 31 39 eqtrd R Ring S Rng F R RngIso S x B F -1 F 1 ˙ R F -1 x = F -1 x
41 40 fveq2d R Ring S Rng F R RngIso S x B F F -1 F 1 ˙ R F -1 x = F F -1 x
42 f1ocnvfv2 F : Base R 1-1 onto B x B F F -1 x = x
43 19 42 sylan R Ring S Rng F R RngIso S x B F F -1 x = x
44 41 43 eqtrd R Ring S Rng F R RngIso S x B F F -1 F 1 ˙ R F -1 x = x
45 17 24 44 3eqtr3d R Ring S Rng F R RngIso S x B F 1 ˙ · ˙ x = x
46 4 3ad2ant3 R Ring S Rng F R RngIso S F -1 S RngIso R
47 46 6 syl R Ring S Rng F R RngIso S F -1 S RngHom R
48 47 adantr R Ring S Rng F R RngIso S x B F -1 S RngHom R
49 2 3 14 rnghmmul F -1 S RngHom R x B F 1 ˙ B F -1 x · ˙ F 1 ˙ = F -1 x R F -1 F 1 ˙
50 48 13 12 49 syl3anc R Ring S Rng F R RngIso S x B F -1 x · ˙ F 1 ˙ = F -1 x R F -1 F 1 ˙
51 30 oveq2d R Ring S Rng F R RngIso S x B F -1 x R F -1 F 1 ˙ = F -1 x R 1 ˙
52 5 14 1 32 38 ringridmd R Ring S Rng F R RngIso S x B F -1 x R 1 ˙ = F -1 x
53 50 51 52 3eqtrd R Ring S Rng F R RngIso S x B F -1 x · ˙ F 1 ˙ = F -1 x
54 53 fveq2d R Ring S Rng F R RngIso S x B F F -1 x · ˙ F 1 ˙ = F F -1 x
55 2 3 rngcl S Rng x B F 1 ˙ B x · ˙ F 1 ˙ B
56 20 13 12 55 syl3anc R Ring S Rng F R RngIso S x B x · ˙ F 1 ˙ B
57 f1ocnvfv2 F : Base R 1-1 onto B x · ˙ F 1 ˙ B F F -1 x · ˙ F 1 ˙ = x · ˙ F 1 ˙
58 19 56 57 syl2an2r R Ring S Rng F R RngIso S x B F F -1 x · ˙ F 1 ˙ = x · ˙ F 1 ˙
59 54 58 43 3eqtr3d R Ring S Rng F R RngIso S x B x · ˙ F 1 ˙ = x
60 45 59 jca R Ring S Rng F R RngIso S x B F 1 ˙ · ˙ x = x x · ˙ F 1 ˙ = x
61 60 ralrimiva R Ring S Rng F R RngIso S x B F 1 ˙ · ˙ x = x x · ˙ F 1 ˙ = x