Step |
Hyp |
Ref |
Expression |
1 |
|
rngisom1.1 |
|
2 |
|
rngisom1.b |
|
3 |
|
rngisom1.t |
|
4 |
|
rngimcnv |
|
5 |
|
eqid |
|
6 |
2 5
|
rngimrnghm |
|
7 |
4 6
|
syl |
|
8 |
7
|
3ad2ant3 |
|
9 |
8
|
adantr |
|
10 |
1 2
|
rngisomfv1 |
|
11 |
10
|
3adant2 |
|
12 |
11
|
adantr |
|
13 |
|
simpr |
|
14 |
|
eqid |
|
15 |
2 3 14
|
rnghmmul |
|
16 |
9 12 13 15
|
syl3anc |
|
17 |
16
|
fveq2d |
|
18 |
5 2
|
rngimf1o |
|
19 |
18
|
3ad2ant3 |
|
20 |
|
simpl2 |
|
21 |
2 3
|
rngcl |
|
22 |
20 12 13 21
|
syl3anc |
|
23 |
|
f1ocnvfv2 |
|
24 |
19 22 23
|
syl2an2r |
|
25 |
5 1
|
ringidcl |
|
26 |
25
|
3ad2ant1 |
|
27 |
19 26
|
jca |
|
28 |
27
|
adantr |
|
29 |
|
f1ocnvfv1 |
|
30 |
28 29
|
syl |
|
31 |
30
|
oveq1d |
|
32 |
|
simpl1 |
|
33 |
2 5
|
rngimf1o |
|
34 |
|
f1of |
|
35 |
33 34
|
syl |
|
36 |
4 35
|
syl |
|
37 |
36
|
3ad2ant3 |
|
38 |
37
|
ffvelcdmda |
|
39 |
5 14 1 32 38
|
ringlidmd |
|
40 |
31 39
|
eqtrd |
|
41 |
40
|
fveq2d |
|
42 |
|
f1ocnvfv2 |
|
43 |
19 42
|
sylan |
|
44 |
41 43
|
eqtrd |
|
45 |
17 24 44
|
3eqtr3d |
|
46 |
4
|
3ad2ant3 |
|
47 |
46 6
|
syl |
|
48 |
47
|
adantr |
|
49 |
2 3 14
|
rnghmmul |
|
50 |
48 13 12 49
|
syl3anc |
|
51 |
30
|
oveq2d |
|
52 |
5 14 1 32 38
|
ringridmd |
|
53 |
50 51 52
|
3eqtrd |
|
54 |
53
|
fveq2d |
|
55 |
2 3
|
rngcl |
|
56 |
20 13 12 55
|
syl3anc |
|
57 |
|
f1ocnvfv2 |
|
58 |
19 56 57
|
syl2an2r |
|
59 |
54 58 43
|
3eqtr3d |
|
60 |
45 59
|
jca |
|
61 |
60
|
ralrimiva |
|