Metamath Proof Explorer


Theorem rngisomfv1

Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is an element of the base set of the non-unital ring. (Contributed by AV, 27-Feb-2025)

Ref Expression
Hypotheses rngisom1.1 1 ˙ = 1 R
rngisom1.b B = Base S
Assertion rngisomfv1 R Ring F R RngIso S F 1 ˙ B

Proof

Step Hyp Ref Expression
1 rngisom1.1 1 ˙ = 1 R
2 rngisom1.b B = Base S
3 eqid Base R = Base R
4 3 2 rngimf1o F R RngIso S F : Base R 1-1 onto B
5 f1of F : Base R 1-1 onto B F : Base R B
6 4 5 syl F R RngIso S F : Base R B
7 6 adantl R Ring F R RngIso S F : Base R B
8 3 1 ringidcl R Ring 1 ˙ Base R
9 8 adantr R Ring F R RngIso S 1 ˙ Base R
10 7 9 ffvelcdmd R Ring F R RngIso S F 1 ˙ B