Metamath Proof Explorer


Theorem rngisomring

Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then both rings are unital. (Contributed by AV, 27-Feb-2025)

Ref Expression
Assertion rngisomring R Ring S Rng F R RngIso S S Ring

Proof

Step Hyp Ref Expression
1 simp2 R Ring S Rng F R RngIso S S Rng
2 eqid 1 R = 1 R
3 eqid Base S = Base S
4 2 3 rngisomfv1 R Ring F R RngIso S F 1 R Base S
5 4 3adant2 R Ring S Rng F R RngIso S F 1 R Base S
6 oveq1 i = F 1 R i S x = F 1 R S x
7 6 eqeq1d i = F 1 R i S x = x F 1 R S x = x
8 oveq2 i = F 1 R x S i = x S F 1 R
9 8 eqeq1d i = F 1 R x S i = x x S F 1 R = x
10 7 9 anbi12d i = F 1 R i S x = x x S i = x F 1 R S x = x x S F 1 R = x
11 10 ralbidv i = F 1 R x Base S i S x = x x S i = x x Base S F 1 R S x = x x S F 1 R = x
12 11 adantl R Ring S Rng F R RngIso S i = F 1 R x Base S i S x = x x S i = x x Base S F 1 R S x = x x S F 1 R = x
13 eqid S = S
14 2 3 13 rngisom1 R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x
15 5 12 14 rspcedvd R Ring S Rng F R RngIso S i Base S x Base S i S x = x x S i = x
16 3 13 isringrng S Ring S Rng i Base S x Base S i S x = x x S i = x
17 1 15 16 sylanbrc R Ring S Rng F R RngIso S S Ring