Metamath Proof Explorer


Theorem rngisomring1

Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025)

Ref Expression
Assertion rngisomring1 R Ring S Rng F R RngIso S 1 S = F 1 R

Proof

Step Hyp Ref Expression
1 eqid 1 R = 1 R
2 eqid Base S = Base S
3 eqid S = S
4 1 2 3 rngisom1 R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x
5 eqidd R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x Base S = Base S
6 eqidd R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x S = S
7 eqid Base R = Base R
8 7 2 rngimf1o F R RngIso S F : Base R 1-1 onto Base S
9 f1of F : Base R 1-1 onto Base S F : Base R Base S
10 8 9 syl F R RngIso S F : Base R Base S
11 10 3ad2ant3 R Ring S Rng F R RngIso S F : Base R Base S
12 7 1 ringidcl R Ring 1 R Base R
13 12 3ad2ant1 R Ring S Rng F R RngIso S 1 R Base R
14 11 13 ffvelcdmd R Ring S Rng F R RngIso S F 1 R Base S
15 14 adantr R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x F 1 R Base S
16 oveq2 x = y F 1 R S x = F 1 R S y
17 id x = y x = y
18 16 17 eqeq12d x = y F 1 R S x = x F 1 R S y = y
19 oveq1 x = y x S F 1 R = y S F 1 R
20 19 17 eqeq12d x = y x S F 1 R = x y S F 1 R = y
21 18 20 anbi12d x = y F 1 R S x = x x S F 1 R = x F 1 R S y = y y S F 1 R = y
22 21 rspccv x Base S F 1 R S x = x x S F 1 R = x y Base S F 1 R S y = y y S F 1 R = y
23 22 adantl R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x y Base S F 1 R S y = y y S F 1 R = y
24 simpl F 1 R S y = y y S F 1 R = y F 1 R S y = y
25 23 24 syl6 R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x y Base S F 1 R S y = y
26 25 imp R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x y Base S F 1 R S y = y
27 simpr F 1 R S y = y y S F 1 R = y y S F 1 R = y
28 23 27 syl6 R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x y Base S y S F 1 R = y
29 28 imp R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x y Base S y S F 1 R = y
30 5 6 15 26 29 ringurd R Ring S Rng F R RngIso S x Base S F 1 R S x = x x S F 1 R = x F 1 R = 1 S
31 4 30 mpdan R Ring S Rng F R RngIso S F 1 R = 1 S
32 31 eqcomd R Ring S Rng F R RngIso S 1 S = F 1 R