Metamath Proof Explorer


Theorem rnglidl0

Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025)

Ref Expression
Hypotheses rnglidl0.u U = LIdeal R
rnglidl0.z 0 ˙ = 0 R
Assertion rnglidl0 R Rng 0 ˙ U

Proof

Step Hyp Ref Expression
1 rnglidl0.u U = LIdeal R
2 rnglidl0.z 0 ˙ = 0 R
3 eqid Base R = Base R
4 3 2 rng0cl R Rng 0 ˙ Base R
5 4 snssd R Rng 0 ˙ Base R
6 2 fvexi 0 ˙ V
7 6 a1i R Rng 0 ˙ V
8 7 snn0d R Rng 0 ˙
9 eqid R = R
10 3 9 2 rngrz R Rng x Base R x R 0 ˙ = 0 ˙
11 10 oveq1d R Rng x Base R x R 0 ˙ + R 0 ˙ = 0 ˙ + R 0 ˙
12 rnggrp R Rng R Grp
13 3 2 grpidcl R Grp 0 ˙ Base R
14 eqid + R = + R
15 3 14 2 grprid R Grp 0 ˙ Base R 0 ˙ + R 0 ˙ = 0 ˙
16 12 13 15 syl2anc2 R Rng 0 ˙ + R 0 ˙ = 0 ˙
17 16 adantr R Rng x Base R 0 ˙ + R 0 ˙ = 0 ˙
18 11 17 eqtrd R Rng x Base R x R 0 ˙ + R 0 ˙ = 0 ˙
19 6 elsn2 x R 0 ˙ + R 0 ˙ 0 ˙ x R 0 ˙ + R 0 ˙ = 0 ˙
20 18 19 sylibr R Rng x Base R x R 0 ˙ + R 0 ˙ 0 ˙
21 oveq2 y = 0 ˙ x R y = x R 0 ˙
22 21 oveq1d y = 0 ˙ x R y + R z = x R 0 ˙ + R z
23 22 eleq1d y = 0 ˙ x R y + R z 0 ˙ x R 0 ˙ + R z 0 ˙
24 23 ralbidv y = 0 ˙ z 0 ˙ x R y + R z 0 ˙ z 0 ˙ x R 0 ˙ + R z 0 ˙
25 6 24 ralsn y 0 ˙ z 0 ˙ x R y + R z 0 ˙ z 0 ˙ x R 0 ˙ + R z 0 ˙
26 oveq2 z = 0 ˙ x R 0 ˙ + R z = x R 0 ˙ + R 0 ˙
27 26 eleq1d z = 0 ˙ x R 0 ˙ + R z 0 ˙ x R 0 ˙ + R 0 ˙ 0 ˙
28 6 27 ralsn z 0 ˙ x R 0 ˙ + R z 0 ˙ x R 0 ˙ + R 0 ˙ 0 ˙
29 25 28 bitri y 0 ˙ z 0 ˙ x R y + R z 0 ˙ x R 0 ˙ + R 0 ˙ 0 ˙
30 20 29 sylibr R Rng x Base R y 0 ˙ z 0 ˙ x R y + R z 0 ˙
31 30 ralrimiva R Rng x Base R y 0 ˙ z 0 ˙ x R y + R z 0 ˙
32 1 3 14 9 islidl 0 ˙ U 0 ˙ Base R 0 ˙ x Base R y 0 ˙ z 0 ˙ x R y + R z 0 ˙
33 5 8 31 32 syl3anbrc R Rng 0 ˙ U